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The f e a s i b i l i t y  of using o p t i c a l  and infrared technology f o r  use i n  
synchronous navigation s a t e l l i t e s  i s  examined; The ana lys i s  is based 
primari ly on a determination of t h e  qua l i ty  of the  image ava i lab le  t o  
t he  detector  under various conditions and not on the  proper t ies  of t he  
de tec to r  i t s e l f  except f o r  the  resolving power of the  detector ;  

I n i t i a l l y  a passive-user system i s  considered where t he  navigation 
s a t e l l i t e  de t ec t s  the infrared energy emitted by t he  u se r ' s  engines. 
J e t  a i r c r a f t  were considered f i r s t  because of the  r e l a t i v e l y  l a rge  
amount of infrared energy emitted by t h e i r  engines. By considering the  
energy incident  on a s ing le  resolvable image element it was found t h a t  
t h e  s i g n a l  energy ava i lab le  could not be r e l i ab ly  dist inguished from 
changes i n  the e f f ec t i ve  background temperature of the  ea r th .  It was 
concluded tha t  a navigation system using passive infrared de tec t ion  
from synchronous a l t i t u d e  is not feas ib le .  

An active-user system i s  a l s o  considered where the  navigating users 
a r e  equipped with high-power, optical-energy sources. A comparison of 
the various op t i c a l  sources showed t h a t  l a s e r s  would yie ld  the highest  
s ignal-to-noise r a t  l o  because t he  narrow spec t r a l  regions i n  which t h e i r  
energy i s  concentrated would allow most of t he  background noise  
t o  be removed by f i l t e r i n g .  It was found t h a t  the  s i gna l  energy 
required for  a s a t i s f ac to ry  image could only be obtained under very r e s t r i c -  
t i v e  condit ions.  Under such conditions, it was a l so  necessary t o  consider 
the  in terr ia l  noise of the  detector  t o  determine i f  the  s i gna l  could be 
detected* It was found t ha t  f o r  a reasonable average source power 
the  s i gna l  could not be detected due t o  the  large amount of de tec to r  
noise present. By using a very high peak power l a s e r  it should be 
poss ible  t o  de tec t  t h e  u se r ' s  s i g n a l  but the  present cos t  of such a 
Laser makes such a system economicalLy impractical  considering t h e  
l imited circumstances under which it could be used. 

Although a number of op t i c a l  systems other than the ones described 
could be considered it is concluded t h a t  op t i c a l  techniques do not 
represent  a f ea s ib l e  a l t e r n a t i v e  t o  the  use of radio  frequency techniques 
f o r  synchronous navigation s a t e l l i t e s .  
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1.0 fNTRODUCTTON 

1.1 Technology 

The rapid progress made i n  op t i ca l  and e lect ro-  opt i c a l  technology 
has opened up new areas  of useful  appl icat ion f o r  t h i s  technology. The 
success of ZTV and photographic cameras has been wel l  demonstrated in  
severa l  space missions. The appl icat ion of t h i s  technology t o  naviga- 
t i o n  problems has become more l i k e l y  with the  development of high resolu- 
t i o n  TV cameras [1, 17, 25, 583. 

The app l ica t ion  of these  techiiiques w i l l  be considered i n  two 
categories.  In i t ia l ly- ,  consideration w i l l  be given t o  passive users  
which emit no s i gna l  spec i f i c a l l y  f o r  navigational  purposes. I n  t h i s  
case t he  navigation s a t e l l i t e  w i l l  determine the  posi t ion of the  user  
by detect ing,  if  possible, the  thermal energy (- 2-8y) emitted by t he  
uses. The second port ion of the  study w i l l  d ea l  with ac t i ve  users  which 
transmit  an op t ica l  s i gna l  f o r  reception by t h e  r ~ v i g a t i o n  s a t e l l i t e .  
WQT of t he  calcula t ions  done f o r  the  passive case w i l l  r e s u l t  i n  graphs 
that express bas ic  system in te r re la t ionsh ips  which apply t o  t h e  ac t i ve  
user  case as well .  

J t  should be noted that t h i s  study i s  l imited by t he  f a c t  t h a t  no 
c lass i f i ed  information was used. Although t h e  r e s u l t s  of c l a s s i f i ed  
research i n  some areas  would be useful ,  they would not change t he  
primary conclusions of t h i s  repor t .  However, conclusions based on 
s ta te-of- the-ar t  predictions may be modified. The r e su l t s  of research 
on the  development' of high-resolution image i n t e n s i f i e r s  would be 
paxt icular ly  re levant .  Research i n to  t h i s  a rea  i s  being done f o r  
developmen% of nigh"cis ion devices . 
1.2 %sic System Conf Lguration 

One approach t o  t h e  design of an op t i ca l  navigation s a t e l l i t e  
system would be t o  have a synchronous s a t e l l i t e  observe a port ion of the  
ear th .  Light energy from t h e  desired a rea  would be focused on an image 
recording device. I f  the  image contained reference objects  of known 
location then the  l i nea r  distance on t h e  image would be d i r e c t l y  propor- 
t i o n a l  t o  t h e  angular separation of the  objects.  The op t i ca l  system 
which w i l l  be considered i s  therefore  an angle-measurementnavigation 
system. 

The use of a spchronous s a t e l l i t e  provides severa l  advantages over 
low a l t i t u d e  s a t e l l i t e s .  A t  synchronous a l t i t u d e  t h e  f ield-of -view would 
not have t o  be very large  t o  provide su f f i c i en t  coverage of the  port ion 
of t he  ea r th  which is v i s ib l e  a t  t h i s  a l t i t u d e .  Narrow field-of-view 
systems have thinner lenses with l e s s  at tendant d i s t o r t i on  problems and i n  
addi t ion t h i n  lenses cause l e s s  attenua.tion of t he  s igna l  which i s  a l s o  
desi rable ,  

h o t h e r  advantage provided by use of' a spchronous satel l i2;e i s  
"ct 2% i s  always located a t  approximabw the  same posi t ion i n  the  sky. 
This is  importmt i f  a c t i ve  sources, such a s  l ase rs ,  a re  t o  be used t o  
provide the  reference points ,  Low a l t i t u d e  s a t e l l i t e s  would require  t he  



reference s tat ions t o  t rack the s a t e l l i t e  and i n  addition more s a t e l l i t e s  
would be required t o  provide equal coverage. h o t h e r  possible solution 
t o  the reference location problem would be t o  'nave s t a r  trackers provide 
as.? indication of the direct ion of t h e  camera. The last approach has been 
rejected because it provides no indication of the  atmospheric re f rac t ion  
tha t  would be encountered. For ground-lsased reference points the 
refraction would be approximtely the  same f o r  a s ignal  from the  reference 
s ta t ion  and users at  the  same elevation angle, The ref rac t ion  could 
then be estimated f o r  users a t  other elevation angles. 

Since the most s tab le  synchronous s a t e l l i t e s  a r e  those which operate 
over the  equator, an analysis has been made of the cwerage area provided 
by these s a t e l l i t e s  with various antenna beamwidths [ 2 ] ,  The area covered 
i s  c i rcular  only if the  antenna or camera i s  pointed a t  the subsa te l l i te  
pointe The area covered f o r  different  orientations is not eas i ly  
described mathematically other than it turns out t o  be the intersect ion 
of a cone and a sphere, 9 .  e., i n  the case of a c i rcu lar  f ield-of-view, 
For the purposes of t h i s  study a c i rcu lar  area of coverage has been 
assumed t o  simplify the  calculations. 

For application i n  the North Atlant ic  a camera with an 8' - 10' 
field-of-view w i l l  be assumed. For t h i s  field-of-view, reference s ta t ions  
could be located i n  Greenland, Iceland, or  Great Britain.  

1.3 Optical Position Information 

Once an image i s  received there a r e  several ways i n  which it could 
be processed t o  obtain posit ion information, The image could be stored 
on f i h  and e i the r  the  f i lm or  a TV image of t h e  f i l m  sent back f o r  
processing. This i s  undesirable since it is  impractical t o  send the 
film back from a synchronous s a t e l l i t e  and t h e  transmission of a picture 
would require a large transmitter power and bandwidth. It might be 
possible t o  use pattern recognition techniques i n  the s a t e l l i t e  t o  
determine the posit ion of desired objects. This, also,  is  impractical 
b e c a ~ s e  of the  great resolution required and the  amount of computational 
capaci-ty whfch would have t o  be b u i l t  i n to  the  s a t e l l i t e .  

From these prac t ica l  considerations it seems undesirable f o r  the  
s a t e l l i t e  t o  transmit or even process a t rue  picture. Wen if a t r u e  
picture could be transmitted the  question remains as t o  how it would be 
processed once received. If a large amount of amputation was involved 
a considerable delay would be introduced between the reception of t h e  
image and the  computation of a user location. 

_4 possible ~olu 'e ion t o  t h i s  problem is t o  use a 1'V camera but t o  
rnake e, binary decision on each resolvable image element as t o  the 
presence of a uoer. Only the  image coordinates of the elements where 
a user was de$rected would be transmitted and such a procedure t?ould 
reduce the amount of data  t o  yeasomble s ize.  The difference in  the  
a m o ~ ~ b  of data required t o  tmnsmi'e an en t i r e  image and the amount required 
t o  transmlt the locations of several points i n  that image could eas i ly  
be many orders of magnitude. In  addition, the  equipment needed t o  



determine the  user  posi t ion from t h e  image coordinates would be g r e a t l y  
reduced. O f  course, the o p t i c a l  energy from the  user  must be s u f f i c i e n t l y  
above t h a t  of t h e  background t o  al low such a system t o  work, 

1.4 Irhplied Res t r i c t ions  on Optical  Navigation Sys tems 

It should be noted t h a t  the  performance of o p t i c a l  systems involving 
the  transmission of energy through the  atmosphere w i l l  be considerably 
degraded by t he  presence of fog, clouds or r a i n  i n  the  transmission path. 
Even i n  t h e  case of an ac t i ve  user  it w i l l  no-bbe possible t o  produce 
s u f f i c t e n t  o p t i c a l  power t o  ensure r e l i a b l e  operation i n  a l l  types of 
weather, For a i r c r a f t  which operate above weather formations, t he  s i g n a l  
a t t enua t ion  w i l l  be negl ig ible  but f o r  low a l t i t u d e  users t h e  weather 
w i l l  severely r e s t r i c t  t he  use of an  o p t i c a l  navigation system. The 
extent  t o  which t h e  performance of op t i c a l  navigation systems w i l l  be  
l imi ted by atmospheric a t t enua t ion  is  analyzed i n  Sections 2.6 and 3.3 
but i n  general  it can be sa id  t ha t  o p t i c a l  navigation systems could only 
operate i n  fair weather. 

I n  order t o  simplify t h e  i n i t i a l  analysis, problems such as ident i fy-  
ing a pa r t i cu l a r  user and resolving a i r c r a f t  separated only i n  a l t i t u d e  
w i l l  be neglected and only the  problem of de tec t ion  w i l l  be considered. 
The problem of detection,  as w i l l  be shown i n  both t he  ac t i ve  and passive 
cases, is  the  c ruc i a l  point i n  t he  a n a Q s i s  of t h e  o p t i c a l  navigation 
sy s t  ern. 

It has been argued in  t h e  previous sect ion that it would be des i rab le  
t o  use a binary de tec t ion  system t o  l i m i t  the  amount of da t a  which would 
have t o  be processed. I n  t h e  passive case the  use of a binary de tec t ion  
scheme w i l l  determine the  type of users  f o r  which the  system can operate 
and t h e  spec t r a l  region which must be used. Both of these  implicaticns 
a r i s e  from the  f a c t  t h a t  f o r  a binary  de tec t ion  system t o  operate i n  t h e  
manner proposed, the object  t o  be detected must be s i gn i f i c an t l y  d i f f e r -  
ent  from the  background present i n  some manner. There a r e  two poss ible  
sources of  o p t i c a l  energy which can be considered i n  t h i s  case. The 
first i s  t h e  r e f l e c t ed  sunl ight  i n  t h e  v i s i b l e  region ( i . e . ,  wavelengths 
on t h e  order of 0.3-Oe7p,) and the  second is the  thermal o r  infrared energy 
(-- 2-81-1) produced by t he  heat  of t h e  user Fs  engines. I n  t h e  v i s i b l e  
l i g h t  region a binary de tec t ion  system would not work because t h e  l a rge  
amount of sunl ight  r e f  Lected from the  atmosphere would obscure t he  small 
amount of s u n l i g h t x e f  lec ted by t h e  user.  I n  add i t ion  such a system 
would not be operative a t  night .  In t h e  infrared region, however, t he  
major source of bacQround energy w i l l  be the  thermal rad ia t ion  produced 
by the ea r t h  but, as w i l l  be shown quan t i t a t ive ly  i n  Section 2.5, the 
major por t ion of' t h i s  energy is  produced a t  wavelengths longer than 
those  at  which t h e  thermal sad ia t lon  of the user  is  produced. Hence, 
the  thermal rad ia t ion  produced by t h e  user  i s  i n  between t he  two major 
sources of background energy (i . e  . , the  shor te r  wavelength re f lec ted  
sunl ight  and t he  Longer wavelength thermal energy p rduced  by t h e  e a r t h )  
and t h i s  is  t h e  spec t r a l  region which w i l l  be considered. 

The infrared energy radiated by a body i s  d i r e c t l y  proport ional  t o  
the  four th  pow'er of i t s  absolute temperature. For a  binary de tec t ion  
scheme using infrared energy t he  object  t o  be detected should be a t  a  



temperature much grea te r  than t h a t  of i ts  background. Among t h e  t h r e e  
types of possible users-- je t  a i r c r a f t ,  propeller  driven a i r c r a f t ,  and 
ships--jet  a i rp lanes  provide t he  g rea tes t  temperature di f ference.  If 
an op t ica l  in f ra red  system w i l l  not work using j e t  planes as t a rge t s ,  
then it ce r t a in ly  w i l l  not  function f o r  objects a t  a lower temperature. 
For t h i s  reason only j e t  a i r c r a f t  w i l l  be considered i n  the  passive 
case analysis .  Although a reciprocating engine a i r c r a f t  may produce an  
amount of infrared energy equal t o  t h a t  produced by a j e t  a i r c r a f t ,  t he  
major port ion of t h i s  energy w i l l  be a t  longer wavelengths and thus 
subject  t o  a grea te r  degree of in terference from background rad ia t ion  
from the  ea r th .  



2.0 AN AMLYSIS OF OI?TICAL TECIUIQUm FOR SYNCKRONOUS NAVSGA,TION 
SATELLITES WITH PASSIVE USEXIS 

A s  s ta ted  previously-, t h e  passive user considered w i l l  be a j e t  
a i r c r a f t  and t he  s i gna l  t o  be detected w i l l  be t h e  infrared e n e r a  
emitted by t h e  plane, 

2.1 Infrared Radiation 

A l l  objects above O'K emit thermal radia t ion.  The spec t r a l  
d i s t r i bu t i on  of t h i s  rad ia t ion  fo r  black bodies is  given by Planckls 
rEtw 

where W = rad ia t ion  emitted per un i t  surface area  per un i t  
h 

wavelength i n  watts/cm 
2 

h = wavelength of emitted radia t ion ( i n  cm) 
0 T = absolute temperature i n  K 

2 
= 3.7413 x lo-'* watt cm 

C2 = 1.438 cm Beg. 

The region of t h e  electromagnetic specbun  i n  which (2.1-1) i s  f a n d  t o  
be most useful  is  divided, somewhat a r b i t r a r i l y ,  i n to  f i v e  d i f f e r e n t  
reg ions : 

u l t r av io l e t  0,001 t o  0.3 p 
v i s i b l e  0.3 t o O . 7 ~  
near infrared 0.7 t o 1 . 5 p  
middle infrared 1.5 t o 2 0  y 
f a r  infrared 2 0 t o  LOO0 p 

The higher t he  temperature of t he  object  being considered t h e  shor ter  
w i l l  be t h e  wavelength of most ol' the  energy emitted. According 
t o  ( 2 , ~ - 1 )  rad ia t ion  i s  emitted a t  a l l  mvelengths f o r  a l l  temperatures 
above O'K but  when considering t h e  a c t u a l  range of temperatures l i k e l y  
t o  be encountered and t h e  shape of (2.1-1) f o r  these  temperatures, it 
i s  found t h a t  f o r  p r ac t i c a l  purposes almost a l l  the  energy w i l l  be 
between 0 ,3  and 20 y. I n  Sectlon 2.5 it w i l l  be shown t h a t  f o r  tempesa- 
tu res  on tqm order of those l i ke ly  t o  be encountered f o r  j e t  a i r c r a f t  
aver hal f  of the energy emitted w i l l  be in  the range 2 t o  8p. 

To f i nd  the  t o t a l  energy emitted, (2-1-1) can be integrated over a l l  
wavelengths t o  give the  Stef an-Boltzman Law. 



2 where W = t o t a l  black body radiant emittance watts/cm 
0 

T = absolute temperature in  K 
2 4 

o = 5.673 x 10-l~ watt/cm deg 

The above Laws a r e  applicable t o  ideal  s i tuat ions and represent the  
maximum possible amount of emitted radiation. In pract ical  s i tuat ions 
the shape of the spectral  dis t r ibut ion is the same but the  radiant 
emittance is less.  Such bodies a re  called "gray bodies" and f o r  such 
bodies an emissivity factor  is  defined 

C = t o t a l  radiant emittance 
t o t a l  radiant emittance of a black body a t  the  same temperature 

Hence, the  spectral  d is t r ibut ion  of the radiation from many r e a l  objects 
w i l l  be given by: 

and 

The above equations a re  only approximations since the  emissivity 
is i n  r e a l i t y  a function of the wavelength. For many materials the  
variatioii of emissivity i s  so  small tha t  C can be assumed constant and 
i n  general t h i s  assumption holds f o r  a l l  so l id  objects or objects with 
s ignif icant  density. Significant sources of infrared energy where the 
emissivity is not constant are hot gases and flames such as the exhaust 
prode~cts from a j e t  engine. Analysis of s i tuat ions where the  emissivity 
is  not constant is much more d i f f i c u l t .  

Using these simple formulas, an analysis can be made of the infrared 
energy being emitted by a j e t  plane, It should be noted tha t  the  hot te r  
parts of the plane do not necessarily emit the most infrared energy 
because of the varying emissivity of the materials involved. Note t h a t  
surfaces which a r e  good ref lectors ,  such a s  aluminum, normally have 
emissivit ies much less  than 1, the maximum value, and a re  therefore 
poor emitters . 

Sources of Infrared Radiation from Jet  Aircraft  

The infrared energy emitted from a j e t  a i r c r a f t  in  the 2-8p region 
can be separated in to  the following four categories: 

1 )  the in te r ior  of the  combustion chamber where the  ac tua l  
flame i s  located 

2 )  t he  exterior combustion chamber walls and t a i l  pipe 



3)  t he  skin  of the a i r c r a f t  ~.rhich i s  heated by atmospheric 
f r i c t i o n  at  high speeds 

4 )  hot, luminous gases which form the  exhaust from the  
engine. 

Each of these  sources contr ibute  t o  the  t o t a l  amount of infrared 
rad ia t ion  generated but 2 )  i s  t he  predominant source which w i l l  be 
considered. 

The energy from the  i n t e r i o r  of the cornbustion chamber, source l), 
provides t he  1arges"cmount of infrared rad ia t ion  from any part  of t he  
plane. However, the  energy from t h i s  source i s  highly d i r ec t i ve  and i n  
normal hor izontal  f l i g h t  the  s a t e l l i t e P s  field-of-view would be normal 
t o  the  d i r ec t i on  of maximum rad ia t ion  and hence very l i t t l e  of t h e  
rad ia t ion  produced by t h i s  source would reach t h e  s a t e l l i t e .  

Sousce 2 ) ,  t he  ex te r io r  combustion chamber ~m, l l s ,  provide t h e  most 
s ign i f ican t  amount of infrared energy f o r  t h e  purpose of passive 
detect ion by navigation s a t e l l i t e s .  The walls  of the  combustion chamber 
a r e  normally made of mater ia l  with a much g rea t e r  emissivity than 
aluminum (see Section 2,1.3). 

The skin  of t he  a i r c r a f t ,  sowce  3) ,  can be heated t o  high 
temperatures by atmospheric f r i c t i o n ,  The usefulness of t h i s  source 
i s  limiked, however, by the  low ernissivity of aluminum and t he  high 
speeds at  which the  plane must f l y  t o  produce these temperatures. The 
emiss ivi ty  of smoo"c commercially ava i lab le  aluminum a l l oys  var ies  
from 0.02 t o  0.07 which makes -the skin  a very poor infrared source 
[3, p. 8041. I n  order Lo provide s ign i f ican t  rad ia t ion  above t h e  
background radia t ion a plane would have t o  f l y  a t  m c h  2,5 at  40,000 f t .  
t o  produce su f f i c i en t  atmospheric f r i c t i o n  [4, p. 1901. The contribu- 
t i o n  of t h i s  source w i l l  be approximated (see Section 2.1.3). 

The exhaust gases o r  plume, source 4),  may extend several  hundred 
f e e t  behind t he  plane and reach temperatures over l ' j 0 0 ~ ~  depending on 
t h e  s i z e  of t h e  j e t  engine [3, p, 611. The spectrum appears t o  be a 
weak black body radia t ion with strong emission l i n e s  whose wavelength 
i s  determined by t h e  molecular composition of t he  gas. The black body 
rad ia t ion  depends on the  emissivity which depends on the  densi ty  and 
s i z e  of t he  pa r t i c l e s  making up t he  gas.  The emiss ivi ty  f ac to r  i s  only 
a few per cent  a t  sea  l eve l  and decreases as much a s  two orders of 
magnitude at high a l t i t u d e s  In  the  desired s p e c t r a l  region due t o  t h e  
reduced atmospheric pressure C51. 

The s t r o x  emission l ines  a r e  due t o  t h e  exc i ta t ion  of m r i o u s  
energy leveLs of the molecules mking  up t h e  e x b u s t  gases. The e x b u a t  
products of "cbe normal organic rn roca rbon  J e t  f u e l s  consis t  mainly of 
w a h r  and carbon, dioxid.e, and C02 molecules "radia te  s t r o q l y  i n  
the  2 t o  3y band, and CQ2 radriates i n  the  4 t o  5,511 band" [6 ,  p. El]. 
Much of "cis infrared energy i s  absorbed by the  unexcited Ii$O and C02 
molecules i n  the  atmosphere; however, a smll port ion i s  transmitted 
f o r  t h e  f ~ l l o w i n g  reason, The radiaLion emitted from the  hot gases 
does not occur a t  t he  same ~mvelen&hs a s  t he  atmospheric absorption, 
"since higher t r sne i t i nns  a r e  excited as the  temperature i s  ra ised"  



[6 ,  po WL]. A small contribution from t h i s  source w i l l  be considered 
(see Section 2.1.3). 

2.1.2 Ai rc ra f t  Modifications t o  Increase Infrared Energy Emission 

I n  order t o  increase t he  e f fec t ive  output of infrared energy, t he r e  
a r e  several  simple modifications t h a t  could be made. The user cannot 
be classed as an ac t i ve  user through these  modifications s ince  they only 
make use of t h e  thermal energy already i n  t h e  plane. 

The emiss ivi ty  of t h e  smooth aluminum sk in  of t h e  plane i s  very 
low.  Increasing t he  roughness of t he  surface can improve t he  emissivity 
by an order of magnitude, e.g., 6061 aluminum a l l o y  has an emissivity of 
0.04 and sanding can increase t h e  emissivity t o  0.41 [3, p. 8041. It 
would a l s o  be possible t o  ge t  an even grea te r  emiss ivi ty  by painting 
the  surface of the  plane and t h i s  would not have t h e  disadvantage of 
increasing t h e  aerodynamic drag as would increasing t h e  roughness of t h e  
surface.  Since t h i s  modification would be most e f f ec t i ve  a t  supersonic 
speeds, where t he  infrared energy from the  plane body becomes most 
s ign i f ican t ,  t h e  paint  would have t o  be ab le  t o  withstand considerable 
heat  and f r i c t i o n .  

Since t h e  combustion chamber rad ia t ion  is s o  highly d i rec t ive ,  
the re  is l i t t l e  t h a t  can be done t o  increase t he  infrared output i n  t h e  
d i r ec t i on  desired.  

The j e t  engines cons t i t u t e  t h e  main source of useable infrared 
energy and any increase i n  t h e i r  infrared output would a i d  detect ion 
grea t ly ,  External  t h r u s t  chamber walls a r e  usual ly  made of highly 
emissive mate r ia l  f o r  cooling purposes but  some improvement might be 
made by subs t i tu t ing  high emissivity mater ia l  f o r  the  aluminum skin  
surrounding t h e  other par ts  of t h e  engine, The added weight and/or 
drag would probably be the  l e a s t  of any of t h e  other  possible modif ica- 
t ione.  

On many of t h e  l a rge r  j e t  a i r c r a f t  t h e  engines a r e  placed below 
and s l i g h t l y  ahead of the  wing s t ructure .  This may cons t i tu te  a severe 
problem s ince t h i s  w i l l  r e s u l t  i n  a shadow when t h e  wing is between t he  
s a t e l l i t e  and t he  engine. A change i n  placement of t h e  engines would go 
a long way towards increasing t h e  f e a s i b i l i t y  of an in f ra red  survei l lance 
navigation s a t e l l i t e  system. 

The exhaust plume does not present any good p o s s i b i l i t i e s  of 
improving its in f ra red  emission. The emissivity can only be changed 
s ign i f i c an t l y  by increasing t he  pressure of the  gas,which i s  not possible.  
Fuel  add i t ives  which change t h e  spec t r a l  composition of the exhaust gas 
would a l s o  have t o  change t h e  molecular composition. Anything except 
t h e  normal hydrocarbon combustion products, H20 and C02, would probably 
be considered a s  pollution,and i n  addit ion,  the  amount of add i t ive  needed 
t o  make any s ign i f i c an t  change would be prohibi t ive  s ince  it would change 
t h e  cha rac t e r i s t i c s  of t h e  fue l .  

Tne most promising modification seems t o  be t he  replacing of the  
outer  engine covering with mater ia l  of a higher emissivity.  Most of t he  
other methods c o ~ s i d e r e d  a r e  qu i te  impractical: 



Since t h e  resolut ion of t h e  navigation system w i l l  not be su f f i c i en t  
t o  resolve t h e  s t ruc ture  of individual  aircraf ' t  t h e  energy from t h e  
a i r c r a f t  can be considered a s  coming from a point source, The received 
s igna l  can then  be calculated by knowing the  so l id  angle intercepted by 
t he  receiving system and the  radiant  i n t ens i t y  of t h e  source. 

The t o t a l  radiant  emittance i s  given by (2.1-4) f o r  a un i t  a r e a  
and t h e  radiant  i n t ens i t y  J ( w / s ~ )  can be found by adding a l l  t h e  areas  
of t h e  plane according t o  (2.1-5) under t h e  assumption of uniform 
i so t rop ic  point sources. 

where J = radiant  in tens i ty  i n  w/sr 
2 4 

o = 5.673 X 10-l2 watt/cm deg 

s = emissivity 
i 

0 

Ti 
= absolute temperature i n  K 

A. = ef fec t ive  a rea  or  a rea  seen i n  t he  d i r ec t i on  f o r  which J 
1 2 

is desired i n  cm . 
Since t he  only a r ea  t h a t  w i l l  be considered d i r e c t l y  i s  t h e  ex t e r i o r  
combustion chamber w a l l  and t a i l  pipe, (2.1-5) reduces t o  

where t h e  values of €, T and A a r e  those associated with t h e  ex t e r i o r  of 
the  combust ion chamber. 

The r e s u l t  given by (2.1-6) i s  val id ,  provided t h e  source can be 
considered as a point source. Since the  system resolution,  determined 
i n  Section 2.3, w i l l  be i n su f f i c i en t  t o  resolve distances on t h e  order 
of t h e  s i ze  of an a i r c r a f t  t he  point source assumption i s  j u s t i f i e d  [61,p27]. 
The diameter of t h e  objective lens necessary t o  resolve the image of an 
a i r c r a f t  is much t o o  large t o  be p rac t ica l .  The source area which w i l l  
be considered i s  the  upper hal f  of the  ex te r io r  of the  combustion chamber 
which explains t h e  f a c t  t h a t  t h e  so l i d  angle i n  the  denominator of 
(2.1-6) corresponds t o  a hemisphere which i s  2n s teradians  instead of 
t h e  normal-ly encountered 47( sr. 

The high thermal and mechanical s t r e s se s  which a r e  encountered i n  
t h e  engine require  high s t rength materials .  One of t he  current ly  
popular materials  used f o r  exhaust system construction i s  columbium- 
s t a l i b i z e d  s t a in l e s s  s t e e l  [7, p. 2013. Normally s t a in l e s s  s t e e l  has 
an emissivity of approximately 0.2 [3, p. 8103 but under such high 
temperatures a t h i n  layer  of oxide w i l l  form which r a i s e s  t h e  emiss ivi ty  
t o  0.7 [4, p, 1-82. The diameter of j e t  engines is on the  order sf 1 m 



and the  length i s  approximately 3 t o  4 m. The e f fec t ive  a rea  w i l l  be 
chosen a s  1.0 m2 and the  exhaust system temperature ranges from 600% t o  
1000% [4, p. 1901. Using these data  and t h e  f a c t  t h a t  the re  a r e  four  
engines on many planes, equation (2.1-6) gives t he  f ollowing r e s u l t s  : 

From ava i lab le  data  on j e t  planes [8, p. 251 t h e  infrared energy 
contributed by t h e  skin  and exhaust gases can be approximated as 20% of 
t he  t o t a l  infrared output which will then be estimated a s :  

3 A value of 7.9 X 10 ~ / s r  i s  reported f o r  t h e  Boeing 707 [61, p. 933. 
Since t h e  data  avai lable  f o r  s ing le  engine f i g h t e r  planes indicate  a 
radiant  i n t ens i t y  of 1.2 X 103 w/sr [8, p. 251, t he  f igures  above seem 
reasonable. 

Note that t h e  above calcula t ions  a r e  qu i t e  optimist ic i n  both t h e  
assumption of t h e  e f fec t ive  area  and t h e  emissivity. It i s  not expected, 
however, t h a t  t he  infrared radiant  i n t ens i t y  could be l e s s  than one order 
of magnitude lower than t h e  value calculated but t h i s  conclusion i s  
g rea t l y  dependent on the  d i rec t ion  from which the plane i s  observed, 
e.g., the re  w i l l  be very l i t t l e  rad ia t ion  observed viewing the  f ron t  of 
t h e  plane [8, p, 253. 

2.2 Received Signal  Power 

The received s igna l  power can be calculated by knowing t h e  rad ian t  
i n t ens i t y  of t h e  source i n  t he  d i r ec t i on  of t he  receiver  and t h e  so l i d  
angle intercepted by t he  receiver.  The so l i d  angle R can be calculated 
using t h e  r e l a t i on :  

R Area projected by objective lens 
= Total  surface a rea  of sphere with radius equal t o  

dis tance from source t o  objective 

I n  the  case where the  objective lens  i s  a t  a large  dis tance from the  
source, t h e  projected a rea  i s  equal t o  the  area  of the objective lens  
with the  r e s u l t  t h a t  (2.2-1) reduces t o :  



where 6 2  = s o l i d  angle int;ercepted i n  s r  

d = objective lens diameter in  m 

r = al 'citude of synchronous s a t e l l i t e  i n  m. 
S 

Subs t i tu t ing  36,000 km f o r  the a l t i t u d e  of the  s a t e l l i t e  gives: 

m a t i o n  (2.2-3) is plot ted i n  Fig. 1. 

The t o t a l  received power is (assuming no atmospheric a t tenuat ion)  

where J is  given by (2.1-7) or  (2.1-8) and 0 i s  given by (2.2-3). The 
t o t a l  received power f o r  the  two radiant i n t ens i t i e s  calculated previously 
is plotted i n  Fig. 2 a s  a function of the  objective lens diameter. The 
received power w i l l  be at tenuated when it t raverses  the atmosphere, but 
if the  p h n e  f l i e s  a t  an a l t i t u d e  of 40,000 f t  or more then approximately 
99% of the cloud formations and atmosphere will be below the plane [3, 
p. 1223 and f o r  t h i s  reason atmospheric a t tenuat ion w i l l  be neglected, 
Since tile 6ensi ty  of t he  atmosphere decreases almost exponenttally with 
altLtu.de Lp, p. 2-11 the  atmospheric at tenuation w i l l  be much l e s s  f o r  
higher a l t i t u d e s  . 
2.3 Image Res o lu t  ion 

The reso lu t ion  of an e lectro-opt ical  system employing a te lev is ion  
camera can be considered a s  being limited by four d i f f e r en t  fac tors :  

1) d i f f r ac t i on  l imita t ions  

2 )  t h e  op t i ca l  qua l i ty  of t he  components 

3 )  t h e  number of l ines  i n  the t e l ev i s ion  pic ture  

4) random var ia t ions  ir l  the  index of re f rac t ion  along the  
transmission path, 

The resolut ion of t he  system is only as good a s  "ce resolution i n  the  
worst case and can be no be t t e r  than the l i m i t  given by the  Rayleigh 
cri'cerion (d i f f r ac t  ion l imita t ion c:iused by the  wavelength of the  l i g h t ) .  

use of computer programs f o r  lens design, the qua l i ty  
of t he  op t i ca l  components avai lable  i s  such t h a t  the  resolut ion i s  only 
l imited by cost  considerations. Eence, the op t i ca l  qua l i ty  OF the 
components w i l l  be neglected i n  considering the resolving power of t he  
system, 

The d i f f r ac t i on  l imita t ion provides the fundamental cri ' terion f o r  
resolution of the  system and the  numbep of l i ne s  in  the te lev is ion  







picture  cannot exceed t h i s  l i m i t .  I n  other words, increasing t he  number 
of l i n e s  cannot increase the  angular reso lu t ion  beyond the  d i f f r a c t i o n  
l i m i t .  

I n  t h e  following graphs and i n  most graphs i n  Section 2, t he  r e s u l t s  
presented w i l l  be f o r  the  user at  t h e  s u b s a t e l l i t e  point. For any 
other pos i t ion  t he  r e su l t s  must be changed t o  account f o r  the  geometrical 
d i l u t i on  of precis ion caused by t h e  projection of t h e  d i f f r a c t i o n  l i m i t  
on the  surface of the  e a h h  (see Appendix A ) .  The ground resolut ion 
given i n  Figs. 4 and 5 must be multiplied by the  geometrical d i l u t i o n  of 
precision (GLOP) factor  given i n  Fig .  3 when the  user is not a t  t h e  
s u b s a t e l l i t e  point .  I n  some cases, however, it would be very d i f f i c u l t  
t o  incorporate t he  GDOP fac to r  i n  t h e  r e s u l t s .  

The angular image s i z e  of a point source i n  a perfect  incoherent 
op t i ca l  system with  su f f i a i en t  i l lumination i s  given by (2.3-1)[3, p.44q 

where pr = angular image s i z e  

A = wavelength of t he  rad ia t ion  

D = diameter of t h e  objective lens.  

The angular resolut ion of a system w i l l  be defined a s  t he  angular 
separatton between two equal i n t ens i t y  point sources a t  which t h e  images 
j u s t  touch on t he  outer edge of t h e  c e n t r a l  region. The images a c t u a l l y  
look l i k e  a c e n t r a l  region with several  surrounding concentric r ings  but  
t he  r ings  w i l l  be neglected since t h e  majority (- 84%) of energy is i n  
the  c e n t r a l  region. Equation (2.3-1) gives t he  angular s i z e  of t he  
cen t r a l  region and from the  de f in i t i on  j u s t  given it a l s o  gives t he  
smallest  resolvable angular separation between two point sources. Note 
t ha t  t h e  r e s u l t  given by (2.3-1) i s  twice t he  s i z e  normally specif ied 
by Lhe iiayleigh c r i t e r i o n  [ g ,  pp. 578-5791, The Rayleigh c r i t e r i o n  is 
(2,3-1) divided by 2. In  t he  Rayleigh c r i t e r i o n  t h e  centers of t h e  
images need only be separated by the  radius of the images f o r  resolut ion,  
while for  (2,3-1) the  centers  must be separated by t he  diameter of t h e  
images, It was f e l t  t h a t  (2.3-1) represents  a more r e a l i s t i c  l i m i t  i n  
a system using a te lev i s ion  camera than t he  RayleLgh c r i t e r i on .  

For an angular resolut ion l i m i t  given by (2.3-1) t he  ground 
resolut ion l i m i t  a t  t he  subsa t e l l i t e  point of a synchronous s a t e l l i t e  
at  a l t i t u d e  rs i s :  
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where r = ground resolut ion.  
@; 

The wavelength used w i l l  be t h e  wavelength a t  which t h e  maximum amount 
of rad ian t  energy is emitted. The wavelength a t  which t he  maximum 
occurs i s  given by t h e  Wien displacement Z a w  [3, p. 1071: 

where K is a constant and f o r  A i n  microns, T i n  OK, K = 2897.9. Cornbin- 
in@;  (2.3-2) and (2.3-3) and subs t i tu t ing  the  value of rs gives 

260 r = -  
g EL' 

where r = ground resolut ion i n  k m  
Q 

D = objective diameter i n  rn 
0 T = source temperature i n  K. 

ZQuation (2.3-4) is  plot ted i n  Fig. 4 f o r  some t y p i c a l  j e t  engine exhaust 
system temperatures . 

The d i f f r ac t i on  l i m i t  appl ies  t o  a l l  op t i ca l  systems and it i s  easy 
t o  see t h a t  v i s i b l e  l i g h t  ( h  w 0.55 IJ.) would provide t he  same ground 
resolut ion with a much smaller object ive  lens than infrared.  

I n  these  calculations no consideration has been made f o r  random 
variations i n  t he  index of re f rac t ion  i n  the  atmosphere due t o  wind and 
other phenomena which may make t he  calculated r e s u l t s  overly opt imis t ic  
(see Section 3.4.3). 

2.3.2 Television Camera Limitat ions on Resolution 

The fundamental l imi ta t ion  provided by a te lev i s ion  camera is i n  
the  number of l ines .  For a canera system with an angular field-of-view 
FOV, t he  maximum angular resolut ion capabi l i ty  P Tor N TV l i n e s  i s  
( see  Appendix B )  t 

FOV @, = -f- 

For a eynchronous s a t e l l i t e  at  an a l t i t u d e  sf rs t h e  best ground 
resolut ion possible with N TV l i n e s  is 

r FOV 
s 

?? = 
Q N 

where FOV i s  i n  radians.  Hence, f o r  given ground resolut ion,  t he  number 
of t e lev i s ion  l i n e s  required fo r  a ground resolut ion r I s  

g 
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r FOV 
s N = r 

@: 

whore N = nwnber of !IT lineu required (aee Appcndix B) 

FOV = field-of-view i n  radians 

r = synchronous a l t i t u d e  
S 

r = ground resolut ion (same un i t s  as r s ) .  
g 

muation (2.3-7) i s  va l id  provided the  angular reso lu t ion  Pt is  grea te r  
than t h e  angular resolut ion avai lable  i n  t h e  image $,. I n  order f o r  
(2.3-7) t o  hold Bt  2 pr or  i n  terms of t he  ground reso lu t ion  using 
(2.3-4) and (2.3-7) t h e  required condition i s  

r FOV 260 s - 
DT 5 N 

where D = diameter of objective i n  m 
0 T = source temperature i n  K 

r = synchronous a l t i t u d e  i n  km s 
FOV = angular fieEd-of-view i n  radians 

N = number of TV l ines .  

The equa l i ty  holds when the  t e lev i s ion  camera reso lu t ion  is  equal t o  t h e  
d i f f r ac t i on  l i m i t .  

Equation (2.3-7) is  plot ted i n  Fig. 5 f o r  an 8' f ield-of-view which 
is su f f i c i en t  t o  cover most of the  North At lan t ic  Ocean. The condit ion 
specif ied by (2.3-8) is  a l s o  noted on t h e  f igure .  For comparison a 2' 
and a 16O f ield-of-view have been used i n  eg. (2.3-7) and t he  r e su l t s  a r e  
a l s o  plot ted i n  Fig. 5. The 160 field-of-view is  su f f i c i en t  t o  cover 
most of t he  port ion of t h e  ea r th  v i s i b l e  from the s a t e l l i t e  while t he  2' 
field-of-view would be suf f ic ien t  t o  cover the  Northeastern United S ta tes .  
The majority of calcula t ions  w i l l  be done using t h e  8 O  field-of-view. 

Considering t h e  present s t a t e  of the  art [l, 17, 25, 58) it is 
reasonable t o  expect t h a t  t e lev i s ion  cameras with over 10,000 l i n e  
resolut ion w i l l  be ava i lab le  by 1970. Using t h i s  f igure  the  r e su l t s  
plotted i n  Fig. 5 show t h a t  an  objective diameter of a t  l e a s t  1 m would 
be necessary. The objective diameter ( 1  m) was chosen as being r e a l i s t i c  
v i t h  respect  t o  s i z e  and weight l imi ta t ions  (a lens  of. 1 m diameter could 
weigh severa l  hundred pounds ) . I n  addit ion,  a lens  (or r e f l e c t o r )  of 
t h i s  diameter can be made e s sen t i a l l y  op t i ca l l y  perfect ,  i .e . ,  f lat  t o  
within 0.10 h where h i s  t h e  wavelength of t h e  l i g h t  and i n  t h e  case of 
2-5p l i g h t  t h i s  would be on t h e  order of 0 . 2 ~ .  With a 1 m objective lens  
and a 10,000 l i n e  t e l ev i s ion  camera, t h e  ground reso lu t ion  a t  t h e  sub- 
s a t e l l i t e  point would be approximately 0.5 km. 
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FIGURE 5 TELEVISION LINES REQUIRED FOR GI.VEN GROUND RESOLUTION 



2.4 Image Exposure Time 

The maximum image exposure time which can be used i s  l imited by t h e  
motion of t he  user and t h e  motion of the  s a t e l l i t e .  Although the  image 
exposure time i s  not used i n  t he  calcula t ion of the  signal-to-noise r a t i o  
i n  t h e  passive case t he  exposure time must be sur f  i c i en t l y  long t o  allow 
the  de t ec to r  t o  respond t o  t he  s i gna l  avai lable .  

I n  order t o  know the image exposure time necessary t o  s top  the  
observed motion, t h e  length of time i n  which t h e  image motion i s  
negl igible  must be known. The e f f e c t  of the  motion of t he  object  
observed w i l l  be g rea tes t  a t  t h e  s u b s a t e l l i t e  point .  The image exposure 
time must be l e s s  than the  time it takes  f o r  t h e  image of one user  t o  
t r a v e l  from one resolvable picture element t o  t h e  next. The element-to- 
element t r a n s i t i o n  time can be calculated by dividing t h e  ground 
resolut ion distance,  which corresponds t o  a center-to-center t r a n s i t i o n  
from one resolvable pic ture  element t o  the  next, by t he  ground speed. 
Dividing (2.3-6) by t h e  ground speed gives 

r FOV s 
NS 

where N = number of TV Unes  

T = element -to-element t rans  it ion time i n  seconds 

= synchronous s a t e l l i t e  a l t i t u d e  i n  m 

FOV = angular f ield-of-view i n  radians 

S = ground speed i n  m/seconds 

Consider ing an 8' f ield-of -view and us Lng su i t ab l e  conversion fac tors ,  
(2.4-1) reduces t o  

where T = element-to-element t r a n s i t  ion time i n  seconds 

N = number of TV l i n e s  

S = ground speed i n  milhr 

Equation (2.4-1) FB plotted i n  Fig. 6 f o r  some speeds t h a t  might be 
expected f o r  a i r c r a f t  l i k e  t he  SST. The t r a n s i t i o n  time must be 
multiplied by t he  GDOP fac tor  f o r  user  posit ions other than a t  the  
s u b s a t e l l i t e  point .  Note t h a t  these  calcula t ions  assume t h a t  t h e  op t i ca l  
system i s  capable of t h e  resolut ion required so  these r e s u l t s  axe va l id  
up t o  t h e  d i f f r a c t i o n  l i m i t  on t h e  number of l ines .  
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The t r a n s i t i o n  time calculated using (2.4-2) i s  the t o t a l  
t r a n s i t i o n  time. If it i s  assumed tha t  t h e  energy density of the user 
image decreases l i nea r ly  a s  t h e  user image moves t o  the next p ic tu re  
clnmant thr.11 thr. u:;or. ~ i g n a l  w i l . 1  dccreuna t o  50% of I t c  origirlrtl valur-. 
In liu 1 i' tlric~ LrunoLLLori tl.rtiu. (JoLng the auoumptio~~ of u state!-of-the-art 
of 1.0,000 tc2lcvinion 1l.nes and an irnuge exposure time equal t o  half' the  
totuL transi..tion tirne, the maximum Fmge exposure time i n  which the  image 
motion w i l l  be negl igible  is 0.2 s. 

While an exposure time of 0,2 s may not be possible due t o  motion 
of the  s a t e l l i t e  the re  a r e  severa l  use fu l  conclusions t h a t  can be drawn 
from it. Slow-scan techniques could be used t o  lengthen t h e  observation 
time i n  order t o  allow grea te r  resolut ion of weak s ignals .  If s t a t i s t i c a l  
processing of the  received information i s  perf ormed then a longer observa- 
t i o n  time w i l l  y ie ld  b e t t e r  r e su l t s .  It i s  easy t o  see t ha t  the re  i s  
l i t t l e  t o  be gained by using a frame r a t e  g rea te r  than 5 per second since 
very l i t t l e  w i l l  have changed from the  previous frame. Since the  GDOP 
f ac to r  w i l l  lengthen t h e  t r a n s i t i o n  time the  average image motion over 
t h e  whole image may be so s l i g h t  a s  t o  allow a frame r a t e  of only one i n  
severa l  seconds t o  convey a l l  t h e  desired information. 

I n  addi t ion t o  stopping the  image motion due t o  a moving ta rge t  the  
exposure time must be shor t  enough t o  s top any image motion due t o  the  
movement of the  s a t e l l i t e .  If it i s  assumed, a s  before, t h a t  t he  user 
image i n t ens i t y  a t  a resolvable image element reduces l i n e a r l y  a s  the 
t a r g e t  moves away then the  point at  which image degradation takes place 
can be taken a s  t h e  point where t he  image in tens i ty  i s  reduced t o  30% 
of i ts  maximum value. The image degradation is then equivalent t o  a 
t a r g e t  movemcnt of r /2 i f  t h e  s a t e l l i t e  i s  perfect ly  s tab le .  I S  a 

@; s a t e l l i t e  a t  dis tance rs i s  revolvirig with an angular r o t a t i on  r a t e  8 '  
then 'bhe equivalent ground movement i s  AT8 'rs where AT is  t he  length of 
time being considered. If the  degradation point i s  an  equivalent ground 
movement of rg/2 then AT, the  maximum image exposure time, w i l l  occur 
when AT = image exposure time 

where r = ground resoLution i n  km 

r = s a t e l l i t e  d is tance i n  km 
C 

8 '  = r a t e  of angular ro ta t ion  i n  rad/c 

AT = image exposure time i n  sec 

Ilencc 

Equation (2.4-4) i s  plotted i n  Fig. 7 f o r  a t yp i ca l  range of ro ta t ion  
r a t e s .  
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4 0 
For an objective diameter of 1 m, 10 t e lev i s ion  lines,and an 8 

i'ield-of-view, the  ground resolut ion would be about 0.5 km. A t y p i c a l  
r a t e  of movement i n  a wel l -s tabi l ized s a t e l l i t e  might be 30 prad/s 
giving a maximum image exposure time of 0.2s a s  before. 

2.5 Determination of t h e  Optimum Spectra l  Region f o r  Passive User 
Detection 

In  choosing the  optimum spec t r a l  region t o  use f o r  a passive user 
navigation system there a r e  two basic fac tors  t ha t  must be considered. 
I n  order t o  de tec t  a t a rge t  a t  a given temperature a spec t r a l  region 
must be chosen which contains a s  much of the  energy f o r  t ha t  pa r t i cu la r  
temperature a s  possible.  The radia t ion from higher temperature black 
bodies w i l l  be a t  the sho r t e r  wavelengths and t ha t  of a lower temperature 
black body a t  longer wavelengths. The temperature range of the t a rge t  
( 6 0 0 ~ ~  - 1 0 0 0 ~ ~ )  i s  above that of the  ea r th  -- 250% and below that of t he  
sun 5 8 0 0 ~ ~ ;  hence ,the shor te r  wavelength cutoff  must  be chosen t o  
eliminate sunlight  a,nd t he  longer wavelength cutoff  must be chosen t o  
el iminate background rad ia t ion  from the  ea r th ,  The low average ea r th  
temperature i s  due t o  the  f a c t  t h a t  some of t he  infrared energy seen 
outside the atmosphere comes frorn the  cold upper layers of cl-ouds 
containing i c e  c ry s t a l s .  Further discussion of these topics  i s  given 
i n  Sections 2.7 and 3.9. 

I n  order t o  f ind  t h e  optimum spec t r a l  region the  amount of energy 
i n  a given spec t r a l  region must be known. The percentage of energy 
below a given wavelength i s  found by in tegrat ing (2.1-1) from 0 t o  the  
desired wavelength and dividing by the  t o t a l  energy given by (2.1-2) 
which gives 

Since no e x p l i c i t  form yet  ex i s t s  f o r  f i n i t e  l im i t s  on t h i s  i n t eg ra l  a 
numerical in tegra t ion  i s  necessary. A computer evaluation of (2,5-1) 
has been performed fo r  some t y p i c a l  passive user temperatures and ear th  
background temperatures which might be encountered. Tables f o r  t he  
evaluation of t h e  black body radia t ion functions (2.1-1) and (2.5-1) a r e  
a l s o  avai lable  [lo]. Computer programs a r e  necessary t o  evaluate the  
rad ia t ion  functions f o r  temperatures and wavelengths which a r e  not 
covered i n  the ava i lab le  tables .  The r e s u l t s  of these  calculations a r e  
given i n  Figs,  8 and 9. Figure 8 shows tha t  a considerable amount of 
s i gna l  energy l i e s  between 2 and 8p. Figure 9 shows t h a t  a considerable 
amount of t h e  background rad ia t ion  from the ea r th  l i e s  above 6p. 

Using Fig ,  8 t he  amount of energy i n  some possible spec t r a l  regions 
has been determined fo r  t he  temperature range of i n t e r e s t  and the  r e su l t s  
a r e  given i n  Fig. LO, The range which has been chosen f o r  consideration 
i s  the  2 t o  6p range. Extending t h e  range down t o  1p w i l l  a t  most 
increase the  s i gna l  power by 6% but a considerable amount of the sun's  
energy l i e s  i n  t he  1 t o  2p region. Increasing t h e  range t o  7p w i l l  
increase t h e  background noise from the  ea r th  by an average of 2.5 times 
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FIGURE 10 ENERGY DISTRIBUTIONS FOR VARIOUS SPECTRAL REGIONS 



and hence t h e  SlUR w i l l  decrease by a f a c t o r  of 2.5. The only r e a l  t e s t  
of' t h e  optir;rl.ity o r  t h c  nprxtrul  rayion  chosen i n  t o  determine t h e  
n i  gr1u.I -to-noioc. r a t i o  ard f i n d  if urly o thor  reg  Lori can sl.gnif i c a n t  l y  
irnprovc the  SNli without greutl.y reducing t h e  received. power, 

2.6 Atmospheric Attenuation Due t o  S c a t t e r i n g  (.Infrared ~ e g i o n )  

Previous ly , the  e f f e c t s  of atmospheric a t t e n u a t i o n  were neglected 
s i n c e  t h e  a i r c r a f t  was f l y i n g  a t  a high a l t i t u d e .  I n  order  t o  f u r t h e r  
j u s t i f y  t h e  conclusion t h a t  t h e  system being considered would not  work 
f o r  users  f l y i n g  under a cloud cover one of t h e  f a c t o r s  involved i n  
atmospheric a t t e n u a t i o n  w i l l  be examined. Atmospheric a t t e n u a t i o n  may 
be caused by s e l e c t i v e  absorp t ion  by t h e  molecules of t h e  medium o r  
s c a t t e r i n g  by t h e  molecules and p a r t i c l e s  i n  t h e  path. I n  t h i s  s e c t i o n  
t h e  e f f e c t  of s c a t t e r i n g  w i l l  be inves t iga ted .  

For t h e  in f ra red  wavelengths being considered t h e  type  of s c a t t e r i n g  
t h a t  w i l l  be considered i s  Mie s c a t t e r i n g  (i. e. l a r g e r  p a r t i c l e  s c a t t e r i n g ) .  
The t ransmiss ion  f a c t o r ,  or  r a t i o  of received i n t e n s i t y  t o  t r ansmi t t ed  
i n t e n s i t y  f o r  a narrow beam expressed as a f r a c t i o n  o r  a percentage, is 
given by (2.6-1) f o r  a v e r t i c a l  atmospheric path from a l t i t u d e  Rl t o  R2 
C11, P O  1-71. 

- - Rl - - 
= e x  1 ( 0  e Hm - e Hm 1 (2.6-1) 

i- 

where T = r a t i o  of received i n t e n s i t y  t o  source i n t e n s i t y  ( t r ans -  
mission f a c t o r )  

Hm = 1.2 km = Mie s c a l e  f a c t o r  from empir ica l  d a t a  

o(0)  = Mie s c a t t e r i n g  c o e f f i c i e n t  f o r  the  wavelength being 
considered a t  s e a  l e v e l  

R2 
= upper a l t i t u d e  i n  km 

Rl = lower a l t i t u d e  i n  km. 

The two exponentials  r e s u l t  from t h e  f a c t  t h a t  t h e  i n t e n s i t y  r a t i o  
decreases  exponent ia l ly  wi th  d i s t ance  and t h e  s c a t t e r i n g  c o e f f i c i e n t s  
decrease  a s  t h e  atrnospher i c  pressure  which a l s o  decreases exponential ly.  
Although most d a t a  a v a i l a b l e  on t h e  s c a t t e r i n g  c o e f f i c i e n t  a r e  f o r  the  
v i s i b l e  region  El21 it can be estimated t h a t  t h e  s c a t t e r i n g  c o e f f i c i e n t  
f o r  2 t o  6p. is equal  t o  appraximately one-f i f t h  of the  v i s i b l e  region  
s c a t t e r i n g  c o e f f i c i e n t  [13> pp. 32-33]. Equation ( ~ ~ 6 - 1 )  has been 
evaluated f o r  seve ra l  d i f f e r e n t  pa th  lengths  of i n t e r e s t  and t h e  r e s u l t s  
have been p lo t t ed  i n  P i g ,  11 with  t h e  var ious  meteorological conditiorls 
spec i f i ed  i n  terms of' t h e  s c a t t e r i n g  coeff ' icient ( see  Table 3 ) .  

The r e s u l t  given by (2,6-1) i s  v a l i d  provided t h e  a t t e n u a t i o n  due 
t o  s c a t t e r i n g  is much g r e a t e r  t h a n  t h e  a t t e n u a t i o n  due t o  absorpt ion .  
If, a t  a p a r t i c u l a r  %rdvelength, both  a t t e n u a t i o n  due t o  ~ c a t t e r i ~ n g  and 
a t t e n u a t i o n  due t o  absorpt ion  occur, then  t h e  t o t a l  o v e r a l l  t ransmiss ion  



FIGURE II ATMOSPHERIC ATTENUATION DUE 
TO SCATTERING. 



fac tor  w i l l  be much l e s s  than t h a t  indicated by (2,6-1). The r e s u l t s  
given i n  Fig ,  11 thus represent an optimist ic ca lcu la t ion  of t he  
a t tenuat ion under the  assumption t he  atmospheric absorption i s  negl igi -  
b le .  I n  the  region 2 t o  6p t h e  assumption of negl igible  absorption i s  
valid i n  %he so-called "atmospher i c  windows" which a r e  2.0-2 .hp, 
3.4-4.1p and 4.6-5.1~. I n  these  regions the  absorption normally r e s u l t s  
i n  an average transmission fac tor  greater  than 0.60 while outside these  
regions the  transmission f ac to r  i s  of ten below 0.01 [13]. The assumption 
of negl igible  atmospheric absorption i s  val id  even outs ide the  atmospheric 
windows i n  the  case of r e l a t i ve ly  low sca t te r ing  coef f ic ien t s ,  i.e., i n  
fair weather, The reason f o r  t h i s  is t ha t  water vapor and droplets ,  
carbon dioxide, and ozone a r e  responsible f o r  the  major par t  of atmos- 
pheric absorption while the  most c  omrnon atmospheric gases, oxygen and 
nitrogen, have very weak absorption bands i n  t h e  infrared [6, p. 431. 

Note t h a t  t he  sca t te r ing  coeff ic ient  i s  assumed t o  be "constant" 
along a path length except f o r  i t s  va r ia t ion  with a l t i t u d e ,  i .e . ,  
t h e  meteorological conditions a r e  t he  same along the  path. Actually 
t h i s  cannot be t r u e  s ince  clouds w i l l  only occupy a very srnall f r ac t i on  
of the path length. The conclusion drawn frorn Pig ,  11 i s  t ha t  atmospheric 
a t tenuat ion due t o  s ca t t e r i ng  occurs primarily i n  the  lowest a l t i t u d e  
portion of the  path t rave l led .  For users on the  ground most 
a t tenuat ion would occur in  t h e  f i r s t  500 m and f o r  planes above 7.5 km, 
the  a t tenuat ion due t o  sca t te r ing  i s  en t i r e ly  negl igible .  The average 
user a l t i t u d e  must therefore  be a s  high a s  possible t o  insure the  
f e a s i b i l i t y  of an op t ica l  navigation system. Addit ional  inf  o r m t  ion on 
sca t te r ing  and a t t enua t ion  i s  given i n  Section 3.3. 

2.7 Analysis of t he  Signal-to-Noise Ratio i n  t he  Passive Case 

In order t o  draw a f i n a l  conclusion on the  f e a s i b i l i t y  of an  o p t i c a l  
navigation system with passive users it i s  necessary t o  evaluate t he  
signal-to-noise r a t i o  a t  t he  s a t e l l i t e  t o  determine the probabil i ty of 
detect ion.  For t h e  purposes of t h i s  calcula t ion only t h e  background 
radia t ion from the  ea r th  w i l l  be considered. 

To evaluatc t h e  irradiance a t  the  s a t e l l i t e  due t o  the  ea r th ' s  
infrared emission, the  following equation w i l l  be used [8, p. E; 61, 
PP. 27-303: 

H = -  Wt cos 8 
fir 

where H = i r radiance i n  w/m 2  

W = parer emitted by a black body 

A = area  of the  black body 

8 = complement of the elevation angle 

r = distance from A t o  t he  detector 

If the  source area A i s  not plane %hen an in tegra l  form of (2.7-1) must 
be used: 



where A i s  t h e  surface a rea  of the  ea r th  which i s  seen i n  t h e  image focused 
on t h e  TV camera. I n  order t o  evaluate (2.7-2) a  numerical in tegrat ion 
was performed (see Appendix C )  f o r  an  a rea  A specified by t he  g r ea t  c i r c l e  
d i s tance  covered i n  the  image. The numerical in tegrat ion was performed 
aver a c i r cu l a r  a r ea  and s ince  t h e  area,  and hence t he  radiant  emittance, 
is approximately equal t o  t h e  square of t h e  great  c i r c l e  d i s tance  covered 
the  r e s u l t s  should appear as a s t r a i g h t  l i n e  when plot ted on log-log 
graph paper. 

The nurnerical in tegra t ion  required determining t h e  dis tance t o  the  
user and t h e  e levat ion angle i n  terms of t h e  synchronous a l t i t u d e ,  ea r th  
radius  and great  c i r c l e  dis tance shown i n  Fig. 12. Using t h e  geometrical 
re la t ionships ,  t he  following r e s u l t s  a r e  obtained: 

d  A r s i n  - 
e r 

where 8 = complement of t he  elevation angle 

r = dts tance from t h e  s a t e l l i t e  t o  the  elemental a rea  

dA = GCD = great  c i r c l e  dis tance 

r = radius of t h e  ea r th  
e  

r = synchronous s a t e l l i t e  a l t i t ude .  
s  

Using these  re la t ionships ,  eq. (2.7-2) sjas evaluated numerically f o r  
incremental areas  of 100 sq. km f o r  c i r cu l a r  regions having a given 
diameter (great  c i r c l e  dis tance) .  The r e s u l t s  a r e  plot ted i n  Fig. 13. 
No%e that the  background noise power density i s  d i r ec t l y  proportional  t o  
the  square of the  great  c i r c l e  dis tance up t o  a  d is tance of about 7000 km 
where the  cosine f ac to r  and dis tance increase have more of an e f f ec t .  
I n  order t o  check t h e  v a l i d i t y  of the  numerical integ a t  ion (2.7-1) w i l l  t be e ~ d l u a t e d  f o r  a plane a rea  having a diameter of LO km. Since t h e  
cosine f ac to r  and dis tance increase w i l l  be neglected t h e  resu l t ing  
background noise power densi ty  should be somewhat l a rger  than t h a t  
predicted by Fig. 13. 

The r e s u l t  of (2.7-5) i s  about 28 o higher than the  value found i n  Fig. 13. 
Por a great  c i r c l e  dis tance of 10e lun which j u s t i f i e s  t h e  r e s u l t s  of t he  
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numerical evaluation. 

The ea r th  was assumed t o  be a black body a t  2 5 0 ' ~  f o r  these calcula-  
t ions  [3, p, 7941. This temperature may seem somewhat low but it 
represents t h e  average temperature of t h e  en t i re  surface of the ear th .  
While 95% of the  outgoing infrared radia t ion comes from the  ground 
[14, p. 321 t h e  presence of large  cloud banks w i l l  lower t he  average 
observed temperature because the upper layers of clouds of ten consis t  
of i ce  csysta1.s which can have an equivalent black body temperature a s  
low a s  -190% [lit, p. 171. For a given area  a s ign i f ican t  va r i a t i on  
between the  average ea r th  temperature and t he  observed temperature can 
occur due t o  t h e  temperature var ia t ion  on t he  ear th .  For example, t he  
highest  and lowest temperatures l i k e l y  t o  be encountered on ea r th  a re  
about -140~3' and 140°F corresponding t o  t he  temperatures reported i n  
Antarctica and t h e  Sahara Desert. These temperatures correspond t o  
193'~ and 333°K,respectively,which means t ha t  a s a t e l l i t e  t ha t  observed 
the  whole ea r th  and had su f f i c i en t  resolut ion could reasonelily be 
expected t o  observe var ia t ions  i n  t h e  equivalent ea r th  temperature of 
1 4 0 ~ .  

The s t r a igh t  l i ne  re la t ionsh ip  between t h e  background power and the 
diameter of t he  observed region i s  important i n  determining the  
d i s t r i bu t i on  of the  background power over the  area  of the  received image. 
Consider t he  s i t ua t i on  described i n  Fig. 14 where two d i f f e r en t  images 
a r e  formed on the  image plane. Since t he  received power i s  proportional  
t o  the  a rea  of the observed region, the  power densi ty  incident on the  
image a rea  f o r  t h e  f i r s t  observed a rea  i s  the  same a s  t ha t  f o r  the  
second provided the  observed regions a r e  not  over '(000 km i n  djameter. 
The f a c t  That t h e  background noise power incident on t h e  image plane 
i s  uniformly d i s t r ibu ted  over the  image i s  useful  i n  determining the  
signal-to-noise rat io. Figure 14 a l s o  i l l u s t r a t e s  why the  background 
power i s  dependent on t h e  s i ze  of t h e  observed region. While the  t o t a l  
power incident on the  objective lens i s  constant t he  construction of 
t he  lens determines what f r ac t i on  of t he  t o t a l  power received i s  
a c tua l l y  focused on the  ac t ive  image area.  

Us iw (2.2-3) and (2.2-4) t he  t o t a l  received s igna l  power i s  given 
by (neglecting atmospheric a t t enua t ion)  

where P = received s igna l  power i n  W on an image element 

d = diameter of the objective i n  m 

J ( T )  = radiant  in tens i ty  i n  ~ / s r  (see ( 2 . ~ ~ ~ 7 )  o r  (2.1-8)). 

Since the  received s igna l  w i l l  be f i l t e r e d  t o  improve t h e  signal-to-noise 
r a t i o ,  eq. (2.7-6) must be modified by .the f r ac t i ona l  amount of t h e  
received energy in  t he  spec t r a l  region chosen, pS(T),which can be found 
frorn lpig. 10 f o r  t he  desired temperature and spec t r a l  region. Equation 
(2.7-6) becomes 
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where P r V s  t he  received s igna l  power given i n  Fig,  2. 

The t o t a l  background power in  the  e n t i r e  image can be found by 
multiplying the  a rea  of the  objective lens by t h e  background noise power 
density,  NGCD9 given i n  Fig. 13. 

,idZ 
'N' = h GCD 

I f  the  system i s  designed s o  t ha t  t he  t e lev i s ion  l i n e  l i m i t  resolut ion 
i s  l e s s  than t h e  op t i ca l  resolut ion l i m i t ,  then t h e  energy of t he  user 
image i n  the d i f f r a c t i o n  limited system w i l l  be focused on an 
individually resolvable element,. Assuming t h a t  the  v e r t i c a l  and 
hor izontal  reso lu t ion  is the same, then t h e  average t o t a l  noise power 
on each resolvable image element is 

where PN = average t o t a l  background power on each individually 
resolvable image element 

N = number of TV l i ne s  

d = object ive  diameter i n  m 

NGCD = back.ground noisc power densi ty  f o r  t he  image of the  
ea r th  consis t ing of a  c i r c l e  with diameter GCD. 

The j u s t i f i c a t i o n  f o r  dividing t he  background power equally among a l l  t h e  
image elements i s  t h a t  t h e  background power i s  found t o  be d i r e c t l y  
proportional  t o  the  observed a rea  and thus i s  constant over t h e  e n t i r e  
image s ince  the  e f fec t ive  a rea  seen by each element i s  the  same. While 
the  a c t u a l  a rea  represented by' each individual  image element increases 
because of the  GDOP fac to r  t he  e f fec t ive  infrared producing a rea  
remains t he  same a s  shown by Fig. 13. 

The t o t a l  background noise power w i l l  consis t  of a continuous 
average background l e v e l  plus var ia t ions  due t o  par t s  of the  image 
having d i f f e r en t  equivalent temperatures which may be due t o  changing 
cl.oud f ormt ions ,  occan currents or weather conditions on the  ground. 
I n  calcula t ing t h e  signal-to-noise r a t i o  only the changing port ion o f  
thc t o t a l  background power w i l l  be used which i s  s imilar  t o  f i l t e r i n g  
out t he  dc component from a  time-varying waveform. As the image i s  
scanned there  w i l l  be time var ia t ions ,  due t o  c'hanging weather 



conditions, unci syxicial vuriubtons due t o  d i f f e r e n t  ty~~r::; of' backgrounds, 
but both changes manifest themselves a s  changes i n  the e f fec t ive  
temperature of t he  background. I n  order f o r  a binary detect ion system t o  
work e f f ec t i ve ly  it w i l l  be necessary f o r  t h e  received s igna l  t o  produce 
a response i n  t he  camera tube which i s  s i gn i f i c an t l y  g rea te r  i n  magnitude 
than t h e  peak va r i a t i on  which can be expected i n  the  background temperature. 

In  order t o  accurate ly  calcula te  t h e  magnitude of t h e  received back- 
ground power it i s  necessary t o  know t h e  average emissivity of t h e  region 
being observed. The prohlem of calcula t ing t h e  infrared energy emitted 
by t h e  ea r th  i s  e s sen t i a l l y  a small portion of t h e  heat balance problem 
which is concerned with t h e  heat exchange between the  ea r th  and i t s  
atmosphere, the sun and t h e  sur roundiq  space. A r e l i a b l e  computation 
of the  heat balance problem has not yet  been made [15] and part  of t h i s  
problem i s  due t o  a lack of accurate knowledge of the  average emissivity 
of large  areas.  The large a rea  occupied by t h e  seas make the  emissivity 
of m t e r  one of the  prime factoro t o  be considered i n  estimating the  
average erniccivity of t h e  earth.  Since the  emicsivity of water i s  on 
the order of 0.37 63, p. 1.673, the  assumption w i l l  'be nnde t h a t  t h e  
ea r th  can be considered a s  an idea l  black body with an emissivity of 
1.0. The average emissivity of sand and vegetation i s  between Oer('j and 
0.95 in  the 3 t o  5p region [3 ,  p. 751. 

I n  order t o  ca lcu la te  t h e  signal-to-noise r a t i o  it w i l l  be necessary 
t o  determine t h e  range of e f fec t ive  background temperatures which may be 
encountered. The maximum range was calculated previously a s  on the  order 
of 140° but t h i s  is not l i k e l y  t o  be encountered i n  a c t u a l  operation s ince  
it is unlikely the  two extremes would occur simultaneously. Two e f f ec t i ve  
background ternpepatwe ranges w i l l  be considered i n  t h i s  report .  The 
f i r s t  temperature range i s  250% t o  280 '~  which corresponds t o  t he  
temperature range t h a t  could be expected over an a rea  with r e l a t i ve ly  
mild weather and few very high cloud formations. The second temperature 
range i s  200% t o  280% which corresponds t o  the  temperature range t h a t  
could be expected over a region with a severe storm. Note t h a t  these  
temperature ranges a r e  much l e s s  than the  maximum temperature range 
t h a t  could be expected. I n  order t o  i l l u s t r a t e  t h e  type of data t h a t  
could be expected from an infrared carnera an examp.1.c of' t he  infrared 
data  obtained from the Nimbus I weather s a t e l l i t e  is givcn i n  Fig. I>. 

Figure 15 HCKGROUND TEMPERATURE3 OBTAINED BY 
TKE IWRARED RABIOMETER I N  NIMBUS I [14, p, 621 



The data  presented i n  Fig. 15 was obtained by Nimbus I while 
passing over Hurricane Gladys on September 18, 1964. It represents 
the e f f ec t i ve  background temperature estimated from the infrared energy 
i n  t he  region 3.5 t o  4. lP which was measured by a scanning radiometer 
with a lead se lenide photoconductive c e l l .  The t r ace  represents a region 
5 km wide and 2500 km long. The height sca le  represents t he  height of 
t h e  cloud formation which has t h e  corresponding temperature and was 
obtained from radiosonde measurements, The region on the l e f t  of t h e  
t race ,  with a temperature var ia t ion  of about 1 5 O ,  represents r e l a t i v e l y  
mild weather compared t o  the  center of t he  storm. Note t ha t  t h e  
temperature measuring process i s  an averaging process which gives t h e  
average e f fec t ive  background temperature over t he  r e s  olvable image a r ea ,  
The assumption of a 30' range of temperature i n  mild weather i s  not 
contradicted by t h e  measured 15' change s ince  t he  resolut ion i n  t h e  
navigation system would be b e t t e r  than 5 km. High resolut ion systems 
w i l l  'nave higher ten~perature var iut ions  because of tho f ac t  t h a t  low 
recnlution sy:;tctnc tend t o  an~ooth out t h e  large  var ia t ions  which would 
be o?>served by high recolut lon systems. The data  preserited i n  Pig. 15 
rnay be considered a:; representa t ive  of one r a s t e r  l i n e  of  the  output 
of an infrared sens i t ive  camera tube with a ground resolut ion of 5 km. 

The e f fec t ive  value of the  background noise w i l l  be taken t o  be the  
di f ference between the  received power a t  t he  highest and lowest 
temperatures. I n  order t o  determine t h e  background noise power dens i ty  
a t  d i f f e r en t  temperatures, t he  r e s u l t s  given i n  Fig. 13 must be modified 
a s  i n  (2.7-11) 

where (T)  = background noise power densi ty  f o r  an e f f ec t i ve  
background temperature of T°K 

NGc~ (250) = value obtained frorn Fig. 13 

T~ 
= desi red e f f ec t i ve  background temperature. 

The va r i a t i ona l  background noise power on each resolvable image element 
f o r  the  two temperature ranges being considered i s :  

f o r  AT = 30' 

f o r  RT = 80' 



where PN = v a r i a t i o n a l  noise power per resolvable image element 
i n  W 

d = objective diameter i n  rn 

3\1 = number of TV l inco 

'GCD 
= noise background power densi ty  fo r  a black body a t  

2 5 0 ' ~  obtained from Fig. 13 

p (T) = f r a c t i o n a l  amount of power i n  the  chosen spec t r a l  region N 
a t  temperature T (determined from Fig. 9). 

The signal-to-noise r a t i o  can then be determined by dividing the  received 
power Pr (2.7-7) by t h e  va r i a t i ona l  noise power PN (2.7-12) which y ie lds  : 

7.75 x p s ( ~ ) $ ~ ( ~ )  
SNR = f o r  AT = 30' (2.7-13a) 

SNR = f o r  AT = 80' (2.7-13b) 

where t h e  coef f ic ien t s  p must be evaluated f o r  t h e  spec t ra l  region and 
source temperature, T, under consideration. Originally the region of 
2-6p was chosen a s  being t h e  region with t h e  highest probable s ignal-to- 
noise r a t i o  but evaluation of (2. '~-13) w i l l  y ie ld  an equation of the  
form : 

N2 
SNR = k- 

NGc~ 

and t h e  s p e c t r a l  region which y ie lds  t he  l a rges t  value of k w i l l  give 
the  best  r e su l t s .  The constant k i s  defined by: 

f o r  AT = 30' 

f o r  AT = 80' 

and has been evaluated f o r  t h e  desired spec t r a l  regions with t h e  r e s u l t s  
given i n  Table 1, 



Values of k f o r  E v a l u a t ~ o n  of SNR 

Source 
Temperature ?K 

S p e c t r a l  
Region 

Table 2 

Conversion Factors  t o  f i n d  SNR From Normalized SNR 
i n  2-bu Region 

C or  c (AT = 30') C o r  c (AT = 80') 
Source 

0 Temperature K 
S p e c t r a l  
Region 

Multiply SNR i n  Fig. 16 by C or  C s  t o  f i n d  SNR. 



The 2-41.1 region has t h e  highest  k value and hence w i l l  have the  
highest signal-to-noise ratio,which indicates  t ha t  the decrease i n  s i gna l  
s t reng th  obtained by using a narrow spec t r a l  region i s  much l e s s  than the  
noise power decrease. It should not be assumed that these  r e s u l t s  
d e f i n i t e l y  indicate  t h e  use of a narrow spec t r a l  regiori, Further 
invest igat ion of' the e f f ec t s  of s o l a r  energy must be considered a t  t h e  
shor te r  wavelengths. It is known, f o r  example, t h a t  i n  the  2 - 2 . 5 ~  region 
the  cnergy present under ce r t a in  circumstances is much g rea t e r  than t ha t  
indicated by a 2'70% black body [6, p. 1181. It has a l s o  been assumed 
that f i l t e r s  a r e  ava i lab le  which provide perfect  bandpass ac t i on  f o r  the 
desired spec t r a l  region,but a l l  p r a c t i c a l  f i l t e r s  w i l l  t ransmit  some 
energy i n  the  stopband. While the  transmission f ac to r  f o r  energy i n  t he  
sJ~opband may be lower than 0.01$, it s t i l l  must be considered (see 
Section 3.6.2). 

Since t he  e f f ec t  of a more exact analysis  including s o l a r  energy 
can only decrease the signal-to-noise r a t i o  the  r e su l t s  obtained must 
be considered a s  optimist ic.  One source repor ts  an e f f ec t i ve  atmospheric 
temperature var ia t ion  of 2 0 0 ~ ~  t o  300% and while t h i s  may occur only 
over t h e  whole surface of the  ea r th  t he  assumption of a 30' or 80' range 
is opt imis t ic  16, p. 1033. I n  add i t ion  the  received s igna l  w i l l  be 
modified by t h e  s p e c t r a l  cha rac t e r i s t i c s  of the  detector  which may a l s o  
reduce t he  s  ignal-to-noise r a t i o .  mua t  ion (2.7-13) has been plot ted 
i n  Fig. 16 f o r  the  constants given i n  Table 1 f o r  the  2 - 4 ~  region and t o  
obtain t he  s  ignal-to-noise r a t i o  f o r  other cases the  conversion constants 
of Table 2 can be used. The C constants a r e  used t o  convert t h e  l i ne s  
associated with a source temperature of 600°K while t he  C '  constants are 
used with t h e  1000°K source temperature. 

It should be emphasized t h a t  the  signal-to-noise rati  o j u s t  
ca lcula ted is f o r  t h e  power incident on t he  objective lens o r  r e f l ec to r  
and assuming i dea l  f i l t e r i n g .  It i s  not t he  signal-to-noise r a t i o  a t  
t h e  input t o  t h e  binary detector  which would be t h e  output s i gna l  of the 
infrared detector .  The a c t u a l  s i gna l  on which t he  binary de tec tor  would 
operate would have a lower signal-to-noise r a t i o  because of t he  noise 
introduced by the  detector  i t s e l f .  The prime sources of t h e  add i t i ona l  
noise t h a t  would de te r io ra te  the  s i gna l  a r e  thermal noise, dark current  
noise, shok noise and 1/f or  f l i c k e r  noise, a l l  of which could be present 
a t  t he  same time. I n  addition, t he  quanturn eff ic iency of a l l  detectors  
i s  spec t r a l l y  dependent and considering the  present s t a t e  of the  art  i n  
infrared t e i e v i s  ion cameras, the  quantum eff ic iency would probably he 
g rea te r  a t  t h e  lower end of the  spec t r a l  region, i . e . ,  2p, which would 
increase the  e f fec t  of re f lec ted  sunl ight  and decrease t h e  signal-to- 
noise r a t i o .  

Same explanation of thc  rccul.tc expressed in Pig,  16 i s  necessary. 
Note t h a t  it i s  necessary f o r  (2,343) t o  be s a t i s f i e d  i n  order f o r  the 
r e s u l t s  t o  be va l id ,  Consider the  smallest  resolvable image clement : 
what i s  the  source of the  energy on t h e  element? The energy from a point 
source, t he  plane i f  any, and t he  background energy from t h e  a rea  of the 
ea r th  corresponding t o  t h e  smallest  resolvable a rea  w i l l  f a l l  on top of 
each other  because of t he  resolut ion l i m i t .  Even though the  source and 
background temperatures a r e  qu i t e  d i f f e r en t  t he  background energy may 
be much grea te r  than the  source energy i f  the  resolvable a rea  i s  large.  
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The consequences of t h e  r e s t r i c t i o n  provided by (2,3 -8) a r e  now evident : 
i n  order t o  cover a la rge  a rea  a very large object ive  i s  needed t o  ensure 
t ha t  t h e  background energy from the  smallest  resolvable a rea  i s  small.  
The s i z e  of t he  objective i s  l imited by p r ac t i c a l  considerations and 
hence e i t h e r  t h e  usefu l  area  of coverage w i l l  be very small or  t he  s ignal-  
to-noise r a t i o  f o r  the  s i z e  of the  a r ea  desired may be s o  low a s  t o  make 
the  system useless.  

The r e s u l t s  expressed i n  Pig,  16 were derived under the  assumption 
that t he  op t ica l  image resolut ion was  b e t t e r  than t h e  t e lev i s ion  camera 
limited resolution--  t he  r e s t r i c t i o n  of (2.3-8). I n  order f o r  the r e s u l t s  
of Fig. 16 t o  be va l id  the  ac tua l  objective lens s i z e  would have t o  
be somewhat g rea te r  than t h a t  indicated by (2.3-8) i n  order t o  compensate 
f o r  a loss  i n  resolut ion due t o  imperfect op t i ca l  components and te lev i s ion  
camera performance. Aberrations or d i s t o r t i on  i n  t h e  objective lens and 
non-uniformity i n  t h e  quantum eff ic iency of t h e  photosensi t iv i ty  surface 
used a s  the detector  w i l l  cause ce r t a in  image elements t o  respond d i f fe ren t ly ,  
which i n  turn  w i l l  decrease the  signal-to-noise r a t i o .  Since Fig. 16 
represents the  response of a perfect  op t i ca l  system a r e a l  system would 
have a somewhat poorer response, The s i z e  r e s t r i c t i  n on t h e  objective e lens (2.3-8) i s  noted i n  Fig. 16 f o r  t he  case N = 10 l ines .  

4 
For example, consider t he  system which has been postulated with 

10 l i ne s ,  8 O  FOV and a 1 m objective.  An 8' FOV corresponds approximately 
t o  a great  c i r c l e  dis tance of about 5000 km and s ince  the  above para- 
meters almost s a t i s f y  t h e  equa l i ty  i n  (2.3-8) they represent about t h e  
best  that can be done with a I m objective.  From Fig. 16 t he  SNR ranges 
between 3.5 X lom2 and 0.5 which i s  hardly su f f i c i en t  t o  allow an 
accurate binary decision t o  be made. The values given i n  Fig. 16 a r e  
very optimist ic and apply only t o  the  actual. image and not the  s i gna l  
received by the binary detector .  

The r e s u l t s  of t h i s  sect ion can be s u m r i z e d  i n  the following 
manner. The s i z e  of the  objective lens determines t h e  s i z e  of the  a rea  
which i s  represented by the  minimum resolvable image element. A binary 
detect ion system operating on each resolvable image element would not 
work because it i s  not possible t o  r e l i ab ly  d i s t ingu ish  between an 
image element with a user present and one with a user absent f o r  f ea s ib l e  
objective lens s izes .  The di f ference between t h e  user present image 
element and the  user absent image element cannot be distinguished from 
the  di f ference which could be expected t o  occur na tura l ly  from the  
background temperature differences between t h e  resolvable areas.  

2.8 Conclusions on a Passive Optical Navigation System 

The present and po ten t ia l  f e a s i b i l i t y  of an op t i ca l  navigation 
s a t e l l i t e  system f o r  passive users can be evaluated f romthe  r e su l t s  
presented i n  Fig. 16. I n  order t o  reduce the  bandwidth and power 
requirements a simple binary detect ion scheme was chosen; however, i n  order 
f o r  such a system t o  operate t he  signal-to-noise r a t i o  must be very 
high (>> 1 )  in  order t o  have a high probabi l i ty  of detection,  Erorn 
Fig. 16 it i s  concluded t h a t  f o r  a p r ac t i c a l  s i  e objective lens ( 1  m )  fi and a reasonable number of t e l ev i s ion  l i ne s  (10 ) t h e  a rea  t ha t  could 
be covered e f fec t ive ly  (high SNR) is very small (a c i rcu la r  area  with 



diarneter of a few hundred km). In  order t o  increase the  a rea  covered,a 
l a rger  objective lens  i s  needed t o  overcome t h e  d i f f r ac t i on  l i m i t  and w i l l  
a l s o  require a higher resolut ion te lev i s ion  camera. 

I f  it becomes possible t o  construct  large  diameter (> 10 m )  
r e f l e c to r s  i n  space a t  synchronous a l t i t udes ,  the objective could be a 
lens or a ref lector ;  a reevaluation of t he  concept would then be 
necessary. Of course, the  s t ruc ture  would 'nave t o  be very r i g i d  both 
s t r u c t u r a l l y  and thermally. i n  order t o  obtain a high qua l i ty  op t i ca l  

4 image and camera tubes with resolut ion i n  excess of 2 X 10 l i ne s  would 
be needed. For the  present it i s  concluded t ha t  passive op t i ca l  tech- 
niques f o r  navigation s a t e l l i t e s  do not allow coverage of s u f f i c i e n t  
a rea  t o  warrant t h e i r  use. Remember a l s o  that it was assumed tha t  the  
engine s t ruc tu r e  w a s  "vis ible"  t o  the  s a t e l l i t e  and i f  the  engines a r e  
rnounted below the  wings passive detect ion would be impossible. 

So f a r  nothing has been sa id  about t h e  detector  t ha t  wauld be 
necessary, except fo r  the resolution,  and t h i s  may prove t o  be a major 
problem. Since no photoemissive surface has been developed which has a 
usable quantum eff ic iency beyond 1 . 2 5 ~  [8, p. 108; 16, p. 1461, t h i s  
eliminates the  use of devices such as  image i n t e n s i f i e r s  and image 
orthicons which use photoemission a s  t he  pr inciple  of operation. The 
high reso lu t ion  te lev i s ion  camera (vidicon) which i s  avai lable  has a 
response t o  only 0 . 8 ~  [l7,p.l&] and iCs t o t a l l y  useless i n  t he  infrared region, 
but s ince  photoconduction i s  the  bas i s  of operation extended spec t r a l  
response i s  possible using other materials .  Some work has been done on 
developing infrared te lev i s ion  cameras [18-22], using photoconduction as 
the  bas i s  of operation, with some response i n  the  desired spec t r a l  region 
(2-4@), but development of a su f f i c i en t l y  sens i t ive  version with adequate 
resolut ion w i l l  require  a subs tan t ia l  development program. Other devices 
which might prove u ~ e f u l  i n  the fu tu r e  a r e  mosaic detectors  which cons i s t  
of srnall infrared detectors  i n  a square a r r ay  but it i s  doubtful  t h a t  
su f f i c i en t  resolut ion could be o'btaincd (arrays 200 X 200 a r e  being 
developed [23]), Most of t he  present "high resolut ion"  infrared 
pictures obtaincd f rom space a r e  obtained us ing mechanically scanned 
infrared photocells but  t o  obtain t h e  resolut ion required over a large  
a rea  i s  out of t h e  question because of the  long length of time required 
t o  scan large  areas .  

It is concluded that op t ica l  techniques with passive users do 
not represent a f ea s ib l e  solution t o  t he  navigation problem f o r  large  
a reas ,  The low signal-to-noise r a t i o  and t h e  lack of su i t ab l e  detectors  
represent major problems and while t h e  s igna 1-to-noise r a t i o  might be 
improved by using non-synchronous s a t e l l i t e s  i n  low orbi ts ,  the  l ack  of a 
sui ta '  l e  detector eliminates t h i s  poss ib i l i ty .  Small a rea  coverage e: (< 10 km2) might be possible s ince  the  signal-to-noise r a t i o  is  much 
larger  but again a su i tab le  detector  i s  not avai lable .  

While t he  capab i l i ty  of constructing large diameter ref  l e c to r s  a t  
synchronous a l t i t u d e  can be considered a s  an expected outgrowth of 
increased space capabi l i ty  the  same i s  not t r u e  of high resolut ion infra-  
red t e lev i s ion  cameras. The predominant need f o r  t e lev i s ion  camera tubes 
sens i t ive  i n  the  near infrared has always been the  desi re  of t he  mi l i t a ry  
f o r  night v is ion devices. There a r e  two p rac t i c a l  ways t o  construct  



night  v i s ion  dcviccs,  One is t o  use photoemiccive ~ u r f a c c s  and phosphors 
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to  use pholocoriductora which a r e  oensl t ive  i n  $tie near infrared.  It is  
more des i rable  t o  use the  near infrared region 1-2p because there  i s  
g rea te r  i l lumination at  night i n  t h a t  region than i n  the  v i s i b l e  region. 
The energy emitted by many stars has a s p e c t r a l  d i s t r i bu t i on  which peaks 
between 1 and 2p and,in addi t ion,a  small  amount of the  moon's ~ e f L e c t e d  
sunl ight  is ic t h i s  region [16, p.  34-35]. Ekcause of the a b i l i t y  of 
near infrared , r ad ia t ion  t o  penetrate clouds and fog b e t t e r  than energy 
in  the  v i s i b l e  region and the  f a c t  t h a t  more en?rgy i s  ava i l ab le  i n  the  
near infrared the  operation of t he  devices using t he  near infrared 
is  o f ten  much more r e l i a b l e  than devices operating i n  t he  v i s i b l e  
region. I n  t h e  region above 2p a g rea t  dea l  of t h e  energy present  i s  
due t o  self-emission by the ea r t h  and the  atmosphere ,which makes t h i s  
region somewhat l e s s  a t t r a c t i v e  than the 1-2p region. 

There is, a t  present, l i t t l e  incentive t o  develop t e l ev i s i on  
camera tubes s ens i t i ve  i n  t h e  desired 2-4p region and p r ac t i c a l l y  no 
incentive t o  develop high resolut ion camera tubes i n  t h i s  region. The 
techniques which a r e  used t o  increase the  resolut ion i n  t e lev i s ion  
camera tubes f o r  the v i s i b l e  region could probably be applied t o  tubes 
which operate in  the  infrared,  however. A need f o r  camera tubes with 
a response i n  the  lop  region w i l l  e x i s t  i n  connection with t he  increased 
mapping of e a r t h  resources by s a t e l l i t e .  The black body rad ia t ion  of 
the  ea r t h  peaks i n  the  10-12p region and thus the peak rad ia t ion  of the  
e a r t h s s  fea tu res  would a l s o  be i n  t h i s  region, The mechanically 
scanned phol;oce;l_ls current ly  ava i l ab le  f o r  the longer wavelength region 
use photoconductive a l loys  or  c mpounds of lead or indium f o r  t he  2-6p 
region and germanium f o r  the  5-60p region, The need f o r  remote sensing 
devices operating on the  longer infrared wavelengths i n  t h e  f i e l d s  of 
ea r th  resources and geological  survey is  l i k e l y  t o  s t imulate  i n t e r e s t  
i n  developing fax  infrared t e l ev i s i on  cameras but t he  order of magnitude 
increase necessary i n  t he  maximum useable wavelength i s  not l i k e l y  t o  be 
achieved i n  t h e  near fu ture .  

The fu tu r e  po t en t i a l  of op t i c a l  navigation techniques f o r  use with 
passive users depends almost e n t i r e l y  on t h e  development of high rssolu-  
t i o n  infrared s ens i t i ve  t e l ev i s i on  cameras and t h i s  i s  not l i k e l y  i n  
the  near fu tu re ,  

The negative concl.uoion reached on the f e a s i b i l i t y  of a pasmi ve 
infrared navigtttion system i o  supported by a recont ca lculut  ion which 
gave 120 km a s  t he  maximum re l i ab l e  detect ion range f o r  a Boeing 707 
[61, p, 4.501. The conditiona under which these calcula t ions  were made 
a r e  similar t o  the conditions t ha t  would be encountered i n  a navigation 
system. 



3.0 AN AllTALYSIS OF' OPTICAL TECHNIQUES FOR SYNCHRONOUS NAVIGATION 
SATELLITE9 WITH ACTIVE USERS 

The dctect ion of passive users was shown t o  require  objective lenses 
of impractical  s i z e .  Also, the  spec t r a l  region of maximum s igna l  energy 
w a s  not compatible with present ly  avai lable  detectors.  The problem 
w i l l  now be modified by providing each user with a  source of op t i ca l  
energy. I n  the  case of an ac t i ve  user t he  source and detector  can be 
chosen s o  t ha t  t h e  spec t ra l  cha rac t e r i s t i c s  of the source match those 
of the  de tec tor ,  The f e a s i b i l i t y  of an ac t i ve  op t i ca l  navigation system 
w i l l  be analyzed by finding a compatible source-detector combination and 
determining i f  t h e  s ta te-of- the-ar t  of t h e  devices involved is su f f i c i en t  
t o  ensure a r e l i a b l e  system. 

3.1 Basic System Cons iderat  ions 

The type of navigation system t h a t  w i l l  be analyzed f o r  the ac t i ve  
case w i l l  be e s sen t i a l l y  the  same a s  t h a t  proposed f o r  t he  passive case. 
A synchronous s a t e l l i t e  w i l l  observe a port ion of t he  ea r th  with a  t e l e -  
v is ion camera which w i l l  de tec t  the  op t i ca l  s ignals  transmitted by t h e  
users.  I n  order t o  reduce t he  power, bandwidth and equipment complexity 
of t h e  system,a binary decision w i l l  be made on each resolvable image 
element as t o  t he  presence or absence of a user. The image coordinates 
of the  user detected and severa l  ground-based reference s t a t i ons  w i l l  
then be used t o  compute t he  posi t ion of t h e  user. The a l t i t u d e  of the  
user must be known i n  order t o  accurate ly  calcula te  the  user ' s  posi t ion 
s o  if the  calcula t ion i s  done by equipment on t he  s a t e l l i t e ,  t he  user 
w i l l  have t o  correct  t he  calculated posit ion,  If the  field-of-view is 
small and t he  resolut ion is  not very f  irre, it may be unnecessary t o  
correct  f o r  t h e  a l t i t u d e  of t h e  user. 

As i n  Section 2, the  objective of t h i s  analysis  w i l l  be t o  show 
various in te r re la t ionsh ips  among system parameters and t o  assume 
representa t ive  values of these  parameters t o  determine t he  f e a s i b i l i t y  
of the  system, It should be noted t h a t  t he  r e s u l t s  of t h i s  analysis  
w i l l  be inherent ly  more dependent on t he  avai lable  technology than i n  
t he  previous section.  The f e a s i b i l i t y  w i l l  depend d i r e c t l y  on the  
maximum capab i l i t i e s  of high power l i g h t  sources and on t h e  s e n s i t i v i t y  
and resolut ion of the  camera Lubes avai lable .  With t h e  large amount 
of c l a s s i f i e d  research being carr ied on f o r  night v i s ion  devices, it 
is reasonable t o  expect t h a t  the  t y p i c a l  system chosen t o  determine t he  
f e a s i b i l i t y  may well  be two t o  three  years behind t h e  current  technology 
i n  u l t ra - sens i t ive  t e lev i s ion  cameras. 

3.2 A Comparison of the Active and Passive Cases 

The ac'tFve user case has ce r t a in  inherent advantages and disadvunt- 
ages compared t o  the  passive user case, A comparison of the  two cases 
w i l l  be flade t o  determine what port ion of the  calcula t ions  made i n  
Section 2 can be used or modified f o r  use i n  the ac t i ve  case. 

An ac t i ve  system provides many advantages over a passive system 
which w i l l  increase the  f e a s i b i l i t y  of such a system. One of the  
advantages i s  t ha t  if  a  higher signal-to-noise r a t i o  i s  needed, it may 



be obtained simply by increasing the  power of t he  source whereas i n  t h e  
passive case the re  was not much t h a t  could be done t o  increase t h e  
signal-to-noise rat io. Since some of t hc  high-power l i g h t  sources 
cur ren t ly  ava i l ab le  produce v i s i b l e  energy, t he r e  a r e  a number of 
de tec to rs  ava i l ab le  with s u f f i c i e n t  spec t r a l  response t o  allow the use 
of commercially ava i l ab le  camera tubes,  I n  t he  ac t i ve  case a s p e c t r a l  
region can be chosen which w i l l  minimize t he  e f f ec t  of background noise 
provided su i t ab le  sources and de tec to rs  a r e  ava i l ab le  f o r  t h i s  region. 

Other advantages i n  the  a c t i v e  case w i l l  a r i s e  predominantly from 
the  use of shor te r  wavelengths (0.3 t o  2. OW) a s  compared t o  wavelengths 
used i n  the  passive case (2,0 t o  6 . 0 ~ ) ~  A s  shown i n  Section 2.3.1 the  
image reso lu t ion  is  proport ional  t o  the  wavelength of the  source 
producing the  image s o  the  use of shor te r  wavelengths w i l l  y ie ld  a 
b e t t e r  image resolut ion.  I n  addi t ion, for  equal ground resolut ion t he  
shor te r  wavelengths w i l l  require  smaller objective lenses than t he  
longer wavelengths. The s p e c t r a l  region chosen f o r  the  passive case 
would have required t ha t  s p e c i a l  mater ia l  be used t o  construct  t h e  
objective lens wherea~ f o r  the  ac t i ve  case ordinary op t i c a l  g lasses  
and/or r e f l e c t i v e  coatinga can be used. The use of an a c t i v e  source 
w i l l  all-ow an incrcused va r i e t y  of users t o  makc use of the  system i f  
it proves feas ib le .  

I n  addi t ion t o  these  advantages the re  a r e  a l s o  severa l  disadvantages 
associated with t h e  ac t i ve  case, The presence of a source w i l l  increase 
the  cost  of the  u s e r B s  equipment. While the  use of a shor ter  wavelength 
w i l l  place l e s s  r e s t r i c t i o n s  on the type of mater ia l  used f o r  the op t i c a l  
components t h e  shor ter  wavelength w i l l  mean higher tolerances i n  order t o  
obtain op t ica l ly  perfect  components. A shor ter  wavelength w i l l  mean t h a t  
sunl ight  w i l l  become the  predominant source of background noise. A 
system which requires a c t i v e  users has the disadvantage t h a t  the  presence 
of non-cooperating users w i l l  not be detected,  The s i g n a l  power needed 
f o r  de tec t ion  rmy require  very high power sources with very narrow 
beamtridths, such ac  a  l a se r ,  which may prove t o  be a s a f e ty  hazard should 
a p i l o t  be observing a  uaer a t  a lower altitude. Thc chances of such 
an accident  seem t o  be almost negl ig ible  but ncvcrtheless it i s  a 
poucibi l i ty .  

While the  culculated r e s u l t s  of Section 2 rnay not be very useful  
in  t he  ac t i ve  case, many of' the  methods of ca lcula t ion w i l l  be qu i t e  
similar and only the  wavelength of the  source w i l l  have t o  be changed 
t o  cor rec t  the  r e su l t s .  The GDOP fac to r ,  Fig,  3, w i l l  play the same 
ro le  i n  modifying t h e  r e s u l t s  of the  calcula t ions  which w i l l  be made a t  
t he  s u b s a t e l l i t e  point ,  The t o t a l  system reso lu t ion  can be calcula ted 
exact ly  'che same way a s  it was in  Section 2.3, It is  qu i te  probable 
that  t h e  diff-mction l imi ta t ion  w i l l  be s o  smll  compared t o  the  t e l e -  
v i s ion  camera resolut ion that it can be neglected except f o r  systenis 
with very srnall objective lenses.  The received s i gna l  can be calcula ted 
i n  t h e  same manner a s  t h a t  given i n  Section 2.2 once the  radiant  in tens i ty ,  
J, i s  found f o r  the sources and spec t r a l  region being considered. The 
r e s u l t s  of Section 2,4 on t h e  required irnage exposure time hold f o r  t h e  
a c t i v e  case a s  wel l  a s  t h e  passive case. 



Since t he  spec t r a l  region used f o r  the  ac t ive  case w i l l  probably 
be i n  the  v i s i b l e  region,which h s  much shor te r  wavelengths,the predominant 
source of background energy w i l l  be re f l ec ted  sunlight .  The ca lcu la t ion  
of the  background energy w i l l  be qu i t e  d i f f e r en t  s ince  the  source is  
d i f f e r e n t .  A g r ea t e r  considerat ion w i l l  have t o  be given t o  the  
propagation of t he  s i gna l  and background energy s ince  t h e  shor te r  wave- 
lengths a r e  more ea s i l y  sca t t e red  by pa r t i c l e s  in  the  transmission path. 
The r e s u l t s  given i n  Section 2.6 w i l l  s t i l l  apply, but t h e  corre , la t ion 
between t h e  s c a t t e r i r g  coef f i c ien t  and weather conditions, Fig. 11, w i l l  
change w i t h  t he  sca t t e r ing  coef f i c ien t  increasing at  the  shor te r  wave- 
l e n g t h ~  f o r  u givcn weather condition. 

The unul-ys is of the ac t i ve  case w i l l  be done i n  a manner similar t o  
that of t h e  passive case. An ana lys i s  of t he  signal-to-noise r a t i o  
w i l l  be performed under idealized conditions t o  determine i f '  the  b inary  
de tec t ion  system w i l l  operate r e l i ab ly .  The problem of the  acqu is i t ion  
of t h e  s a t e l l i t e  by t he  user w i l l  a l s o  be considered s ince  the  f a c t  t h a t  
t he  user can be detected is not  s u f f i c i e n t  t o  ensure a f e a s i b l e  system. 

3.3 Atmospheric Attenuation (v i s i b l e  ~ e g i o n )  

The problem of atmospheric a t t enua t ion  due t o  s ca t t e r i ng  was 
discussed i n  Section 2.6 f o r  t h e  spec t r a l  region i n  which t h e  passive 
u s e r 9 s  s i g n a l  was located. For the  s i t u a t i o n  where t he  user has an 
a c t i v e  source, t he  problem of atmospheric a t t enua t ion  w i l l  have t o  be 
reconsidered f o r  two reasons. The use of an ac t i ve  source may reduce 
t h e  problem of atmospheric a t t enua t ion  t o  simply increas ing the  source 
power, Also, t he  shor ter  wavelength rad ia t ion  which w i l l  be used 
changes the  typc of s ca t t e r i ng  process t h a t  w i l l  be encountered. 

Ai rc ra f t  which a r e  capable of operating above moct weather 
f o rmt ions  w i l l  not encounter t he  problem of a t rno~pher ic  a t t enua t ion  
t o  any s i gn i f i c an t  extent .  The s igna l  received from low a l t i t u d e  
a i r c r a f t  and ships may be at tenuated severa l  orders of magnitude i f  
t h e  user moves under a Zarge cloud formntion. It is reasonable t o  
expect t h a t  t h e  amount of time a pa r t i cu l a r  user could make use of an  
o p t i c a l  navigation system w i l l  be proport ional  t o  t h e  percentage of 
cloud cover a t  t he  average a l t i t u d e  of t h e  user.  Detailed in form-  
t i o n  i s  ava i l ab le  on t h e  amount of cloud cover t h a t  can be expected 
above various a l t i t u d e s  f o r  each month of t he  year [3, pp. 118-140; 
27; 283. A t  ground l e v e l  the  mean cloudiness i n  percentage of sky 
cover above t he  North At lan t ic  averages about 50% while 90% of the  
clouds w i l l  be below 9.8 km (32,000 f t  ) and 99% w i l l  be below 11.5 km 
( 3 6 9 ~ ~ ~  f t  ) [ 3 ,  pp. 118-1221. Since most atmospheric absorption 
of' o p t i c a l  energy i s  due t o  water vapor t he  conclusion t h a t  
only low a l t i t u d e  users w i l l  be subJect  t o  a t t enua t ion  problems i s  
strengthened by t h e  f a c t t h a t  "More than 90 per cent  of the  water vapor 
l i e s  i n  t h e  atmosphere below 15,000 t o  20,000 f t  , . . ." [13, p, 353. 

I n  view of t he  r e s t r i c t e d  use low a l t i t u d e  users could make 
of o p t i c a l  navigation systems, it would be necessary t o  equip them with 
two navigation systems t o  ensure r e l i a b l e  operation i n  poor weather. 
Only a de ta i l ed  analys is  of t h e  cos t s  involved could determine i f  it is  
economically f e a s ib l e  t o  equip low a l t i t u d e  users with both an op t i c a l  



and a s tandard  r a d i o  nav iga t ion  system, The expense of  two nav iga t ion  
oyntem:: might be ,ju~"c.fLcd Lf much h l ~ h c r  rzccur:l.cy cr)lllii Fr: obtainc:d 
l't'utri 'tho op'tf cul. klt~vigtit ion r.iyt~~L(?rn 1.11 whi cki cuijc* Lhc r&dio  w v i g a t i o n  
system would be used as a back-up system, The d( ; . t e r iora t ion  of pe r fo r -  
mance of a n  o p t i c a l  nav iga t ion  system i n  bad weather w i l l  be d r a s t i c  
and t h e  system w i l l  e i t h e r  work w e l l  o r  no t  at a l l ,  The o p t i c a l  system 
w i l l  n o t  have a g r a d u a l  r educ t ion  i n  p o s i t i o n  accuracy which might be 
expected of r a d i o  naviga t ion  systems as propagat ion condi t ions  become 
worse. 

The r e s u l t s  of Sec t ion  2,6 must be modified because a d i f f e r e n t  
t y p e  of  s c a t t e r i n g  mechanism becomes important a t  wavelengths i n  t h e  
v i s i b l e  r eg ion  and near  i n f r a r e d .  The same formulas apply;however,the 
weather condi t ions  a s s o c i a t e d  w i t h  a g iven  va lue  of t h e  s c a t t e r i n g  
c o e f f i c i e n t  change, The predominant form of s c a t t e r i n g  i n  t h e  2-1Oy 
r e g i o n  is  Mie s c a t t e r i n g  o r  B r g e r  p a r t i c l e  s c a t t e r i n g  and t h e  
s c a t t e r i n g  c o e f f i c i e n t  i s  cons t an t  i n  t h i s  reg ion  as far as p r a c t i c a l  
r e s u l t s  a r e  concerned. I n  t h e  v i s i b l e  and near  i n f r a r e d  region t h e  
t y p e  of s c a t t e r i n g  changes from Mie s c a t t e r i n g  t o  Rayleigh , s c a t t e r i n g  
which is h ighly  wavelength dependent,  

Under c e r t a i n  r e s t r i c t i o n s  on t h e  type  of s c a t t e r i n g  p a r t i c l e  t h e  
Rayleigh s c a t t e r i n g  c o e f f i c i e n t i s  g iven  by [ 3 ,  p, 2053: 

where ciR(h9 h) = Rayleigh s c a t t e r i n g  c o e f f i c i e n t  as a func t ion  of 
wavelength and a l t i t u d e  per  cm-1 

oR(0)  = s c a t t e r i n g c o e f f i c i e n t a t  s e a l e v e l  

h  = a l t i t u d e  i n  km 

KR = 8,0 km = atmospheric s c a l e  f a c t o r  f o r  Rayleigh 
s c a t t e r i n g  

h = wavelength i n  cm 

N = average number of p a r t i c l e s  pe r  cm 3 

A = average c ros s - s  c t i o r i a l  a r e a  of t h e  s c a t t e r i n g  8 p a r t i c l e s  i n  cm . 
The RayLeigh s c a t t e r i n g  cocff'i.cien% is  inve r se ly  p ropor t iona l  t o  t h e  
f o u r t h  power of t h e  wavelength and dominates over t h e  Mie s c a t t e r i n g  
c o e f f i c i e n t  a t  s h o r t  ' ~ ~ a ~ v e l e r g t h s ,  Mie ~ c a t t e r i n g  theo ry  i s  app l i ed  i n  
cases  where t h e  p a r t i c l e  s i z e  is  comparable t o  o r  l a r g e r  t han  t h e  
r a d i a t i o n  wavelength and Rayl.eigh s c a t t e r i n g  theory  a p p l i e s  when t h e  
r a d i a t i o n  wavelength i s  much l a r g e r  t h a n  t h e  p a r t i c l e  s i z e .  



The nature of the  s ca t t e r i ng  process is dependent on the  p a r t i c l e  
composition of the  atmosphere through which t h e  rad ia t ion  t r ave l s .  The 
p a r t i c l e  composition of the  e a r t h 4 s  atmosphere is such t h a t  t h e  Mie 
and Rayleigh s ca t t e r i ng  coe f f i c i en t s  a r e  equal  somewhere i n  t he  range 
1 t o  2p, B r t i c l e s  the  s i z e  of t h e  molecules of the  atmosphere give 
r i s e  t o  Rayleigh sca t t e r ing  while pa r t i c l e s  l i k e  dus t  and tmte r  drople ts  
i n  fog give r i s e  t o  Mie s ca t t e r i ng ,  I n  t he  v i s i b l e  region i n  f a i r  weather 
it i s  reasonable t o  assume t h a t  a l l  t h e  s ca t t e r i ng  is  Rayleigh sca t t e r ing .  
However, i n  poor weather, l i g h t  i n  the  v i s i b l e  region is  subject  t o  both 
Rayleigh and Mie sca t t e r ing .  The reason f o r  t h i s  is tke change in the 
s i z e  of the  p a r t i c l e s  making up t h e  atmosphere. I n  f a i r  weather t h e  
atmosphere I s  comp sed mainly of air  and water molecules which range 
i n  radius from 10-rji t o  0 . 1 ~  [12] thus giving r i c e  t o  Rayleigh scattering. 
Haze, Bog aru3 clouds on t h e  other  hand a r e  composed of water d rop le t s  
which range i n  radius from 0,3p t o  3011 [ l2 ]  and give r i s e  t o  Mie 
sca t t e r ing .  Attenuation due t o  atmospheric absorption a l s o  increases 
g rea t ly  a s  t he  water content of t h e  atmosphere increases,  

I n  order t o  ca lcu la te  t he  a t t enua t ion  due t o  s ca t t e r i ng  i n  the  
v i s i b l e  region t he  data  presented i n  Table 3 [ll, p. 151 w i l l  be used. 
Table 3 gives t h e  t o t a l  sea  l e v e l  sca t t e r ing  coef f i c ien t s  f o r  various 
meteorological conditions and f o r  bad weather t h e  s ca t t e r i ng  coef f i c ien t s  
f o r  the v i s i b l e  region a r e  gener'ally four  t o  f i v e  times g r ea t e r  than 
t h e  s ca t t e r i ng  coe f f i c i en t s  f o r  t h e  same weather condit ion i n  t h e  
infrazed given i n  Fig,  11, The r e s u l t s  presented a r e  experimentally 
measured values and represent  t he  average value of t h e  s ca t t e r i ng  
coef f i c ien t  f o r  the  weather condit ion given, Since t h e  s ca t t e r i ng  
coef f i c ien t s  a r e  averages f o r  measurements made with v i s i b l e  l i gh t  
t h e  r e s u l t s  probably represent  the t rue  value of the  s ca t t e r i ng  
coef f i c ien t  only i n  the  middle of the  v i s i b l e  region (N 0 ~ 5 5 ~ ) ~  For 
l o w  values of the  sca t t e r ing  coef f i c ien t  which correspond t o  f a i r  
trer;t.ther a,nd Rtt.yleigh cca t t c r ing  t h e  t r u e  scatterj.ng coef f i c ien t  w i l l  
be higher 'chsn t hc  value givcn f o r  blue l i g h t  and l m c r  than the  value 
given f o r  red l i g h t e  I f  it i s  asswned t ha t  t he  oca t t c r ing  coef f i c ien t s  
givcn represent  t he  value at  0.>5p then (3.3-2) could be used t o  f i n d  
t h e  Rayleigh s ca t t e r i ng  at  other  wavelengths from the  data  given i n  
Table 3, 

To evaluate t h e  r e su l t s  which would be obtained by using the  da t a  
of Table 3 i n  t h e  equation f o r  atmospheric transmission (2.6-1) it is 
necessary t o  know how and why these  experimental r e s u l t s  were obtained. 
I n  theory , t o  accurate ly  ca lcu la te  t he  s ca t t e r i ng  coef f i c ien t  along a 
given path it i s  necessary 60 know the  t o t a l  composition of the  atmosphere, 
t h e  s i z e  d i s t r i bu t i on  of a l l  the  atmospheric components and t he  index 
of r e f r ac t i on  of each component a l l  a s  a function of the  posi t ion along 
t he  given path. A s t a t i s t i c a l  approach t o  t he  problem may provide some 
simpliflcaJcion but t h e  da ta  required t o  perform such calcula t ions  is  
not ava i l ab le .  I n  order t o  obtain use fu l  r e s u l t s  it is  the re fore  
necessary t o  use experimental da t a  which i s  usual ly  su f f i c i en t  f o r  a 
f i r s t  approximation, 

Since it i s  not  possible t o  separate the  a t t enua t ion  due t o  Rayleigh 
sca t t e r ing ,  Mle s ca t t e r i ng  and atmospheric absorption i n  experimental 
measurements t h e  s ca t t e r i ng  coef f i c ien t  i s  a combination of a l l  t h r ee ,  
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A l l  t h r e e  types  of a t t e n u a t i o n  a f f e c t  t h e  t ransmiss ion  f a c t o r  i n  a n  
exponent ia l  fashion,  hence t h e  experimental ly determined s c a t t e r i n g  
c o e f f i c i e n t  may be represented as : 

where 
OT 

= measured va lue  of  t h e  s c a t t e r i n g  c o e f f i c i e n t  

OR 
= Rayleigh s c a t t e r i n g  c o e f f i c i e n t  

OM 
= Mie s c a t t e r i n g  c o e f f i c i e n t  

= atmospheric absorpt ion  c o e f f i c i e n t  

The asswnption of a t r a n s m i s s i a l  f a c t o r  which decreases exponent ia l ly  
wi th  dista.nce f o r  atmospheric absorpt ion  Is m i i d  i n  t h e  atmospheric 
windows and regions s u f f ' i c i e n t l ~ r  f a r  aw8y from t h e  extreme absorpt ion  
nea r  t h e  s p e c t r a l  l i n e s  of t h e  atmospheric components s. 

Tkre t o t a l  s c a t t e r i n g  c o e f f i c i e n t  i s  determined experimentally by 
measuring t h e  tra,nsmitted and received i n t e n s i t i e s  of a narrow beam of 
l i g h t  which a r e  r e l a t e d  t o  t h e  s c a t t e r i n g  coeff ic ien"cy:  



where I - received intcnoity R 
IT = transmitted i n t ens i t y  

R = path length 

OT 
= t o t a l  sca t te r ing  coeff i c i en t .  

Reliable experimental r e su l t s  w i l l  be obtained provided the weather 
conditions along t he  path a r e  reasonably constant and the  spec t r a l  region 
being used i s  r e l a t i ve ly  f r e e  from atmospheric absorption. Measurements 
a r e  normally made i n  t he  atmospheric windows where it i s  assumed t h a t  
OA << OR or OA e< OM i n  f a i r  weather and hence can be neglected. The 
da t a  i s  then interpolated t o  f ind t he  value of t h e  sca t te r ing  coef f ic ien t  
i n  regions where absorption occurs. Depending on the  wavelength and 
path conditions, the assumption i s  a l s o  made t ha t  the  sca t te r ing  is 
e i t h e r  e n t i r e l y  Ray leigh sca t te r ing  or en t i r e ly  Mie scat ter ing.  

Since t he  experimentally determined s ca t t e r i ng  coef f ic ien t  UT of ten 
includes a  s ign i f ican t  contribution from atmospheric absorption, 
especia l ly  at  high values of OT which correspond t o  water drople ts  along 
t he  path, some authors prefer  t o  c a l l  OT t h e  ext inct ion coef f ic ien t .  
The s ignif icance being t h a t  f o r  low values of OT t h e  a t tenuat ion is  due 
primarily t o  sca t te r ing  while f o r  high values of UT the re  i s  a s ign i f i c an t  
contr ibut ion from atmospheric absorption. 

An example of the  experimental r e su l t s  obtained i s  given i n  Fig,  17. 
The f l a tne s s  of t h e  curves above 2y indicates t he  t r a n s i t i o n  from 
Rayleigh dominated sca t te r ing  below 2y t o  Mie dominated sca t te r ing  above 
2y. The curves of wdvelengths below l y  a r e  above the calculated values 
f o r  Rayleigh sca t te r ing  i n  pure air  because of add i t iona l  s ca t t e r i ng  due 
t o  t he  presence of water vapor and absorption which occurs t o  some 
degree even i n  t he  atmospheric windows. The data  points were taken at 
wavelengths chosen t o  be a s  f a r  away from the  extreme absorption l i n e s  
as possible.  

Since the  sca t te r ing  coef f ic ien t s  given i n  Table 3  were obtained 
from rrieacurements in  t h e  v i s i b l e  region, it can be assumed t h a t  t h e  
predominant form of a t tenuat ion was a t tenuat ion due t o  Ijayleigh s ca t t e r i ng  
at  l e a s t  f o r  the  lower values of t he  sca t te r ing  coef f ic ien t ,  The t rans -  
mission fac tor  or in tens i ty  r a t i o  i s  calculated f o r  Rayleigh s ca t t e r i ng  
by usifig the da ta  i n  Table 3 and the  scale  f ac to r  from (3.3-1) anti then 
using (2,6-1) with the  applicable Rayleigh parameters. The at~nospheric 
sca le  fac tor ,  derived from empirical  data, i s  a measure of the  decrease 
i n  p a r t i c l e  densi ty  with a l t i t ude .  A large sca le  f ac to r  means a  slow 
decrease i n  density and cornpadring t he  Rayleigh sca le  f ac to r  (8.0) with 
t he  Mie scale  fac tor  (1.2) shos~s t h a t  s ignif  icant  Ray le igh s ca t t e r i ng  
occurs at  higher a l t i t u d e s  than does Mie sca t te r ing .  This r e s u l t  i s  
consistent  with t h e  f a c t  t ha t  atmospheric gas molecules, which cause 
Riiylelgh scat ter ing,  a r e  found a t  higher a l t i t u d e s  than the wa-ber drople ts  
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FIGURE 17 SCATTERING COEFFICIENTS D E T E R M I N E D  F R O M  
EXPERIMENTAL RESULTS AT WAVELENGTHS AWAY 
FROM ABSORPTION BANDS [13, p . 3 3 1  



which cause Mie sca t t e r ing .  The r e s u l t s  of evaluating (2.6-1) with t h e  
lluylcigh s ca t  t e r l r ~  parumetcrc urc? glvan i n  T:zb Lc b .  Notc: t h a t  (2.6-1) 
&,:~~rurnno u vc?sl ; iccl  trunt:rr~Lnclon j)r~l,h l i n t 1  'I.'or ur;c:rrj not at t hc  cubcu t c l l i t c  
poinL 'Lfic? r ~ .  t~nou pl.ic2 raic ultenu&'L 1011 wou Lrl bo grr:uLc;r bccuuacj of "r;hc? incraaced 
pa th  Length i n  the  atmosphere, 

Table 4 

Transmission Factor I ~ / I ~  

Since the  type of s ca t t e r i ng  changes from Rayleigh t o  a mixture of 
Rayleigh and Mie s ca t t e r i ng  i n  cases where the re  i s  a s i gn i f i c an t  
concentration of water drople ts  [ i. c.  ca:;cz where oy >_:3.0), t h e  re:;ul.tc given 
in  Table 4 my not be correct .  The increased s ignif icance of atmospheric 
absorption cluc to the presence of the  water drople ts  m y  make the  t rans -  
f ~ ~ i s c i o n  f ac to r  evc:n 1.eos than those given in TabLc 4. A s  i n  Sect ion 2.6 
these  resul-ts were calcula ted assuming t h a t  t h e  meteorological conditions, 
are constant (i.e. oy j.:: constant)  along Wle enLi re path.Cl.ouds which can give 
high vblues of the  s ca t t e r i ng  coef f i c ien t  can 0i1l;y occur up t o  a l t i t u d e s  
of about 50 km. The j u s t i f i c a t i o n  f o r  t he  assumption 01 a constant 
s ca t t e r i ng  coef f i c ien t  is found by comparing the  transmission fac to rs  i n  
the  f i r s t  and f i f t h  columns of Table 4. The comparison shows t h a t  t h e  
majori ty of t h e  a t tenuat ion occurs i n  the  f i r s t  t e n  h . o f  the  atmosphere 
over which o~ can be constant without t h e  need f o r  any assumptions, 

The r e s u l t s  given i n  Table 4 indicate  t h a t  it w i l l  not be 
poss ible  f o r  ground-based ships  o r  even low a l t i t u d e  planes t o  overcome 



t k l c  probl[!r~i ol' uLrnor;pllcric ttZ;tc?rl~xuLiori. Compttrirlg thr: r e s u l t s  i n  c o l u n ~ i  
one of' Table 4 shows t h a t  ground based use r s  could expect  a  v a r i a t i o n  of 
f o u r  o rde r s  of magnitude i n  t h e  atmospheric  a t t e n u a t i o n  from c l e a r  days 
( G ~  = 0.1) t o  days w i t h  haze (oT = 1.0). For low-a l t i tude  u s e r s  t o  
overcome even Rayleigh s c a t t e r i n g  wi th  no clouds p re sen t  would r e q u i r e  
a source  power f o u r  o rde r s  of magnitude g r e a t e r  t han  t h a t  needed f o r  h igh  
a l t i t u d e  users .  To overcome t h e  a t t e n u a t i o n  introduced by t h e  presence 
of a moderately t h i c k  cloud bank (4-7 km) would probably r e q u i r e  a 
source  power t e n  o rde r s  of magnitude o r  even more l a r g e r  t h a n  t h e  source  
power r equ i r ed  f o r  t h e  h igh  a l t i t u d e  use r ,  The r e l a t i v e  s i z e  of t h e  
power i n  one case  compared t o  t h a t  i n  t h e  o t h e r  makes it apparent  t h a t  
it t r i l l  no t  al.wa,ys b e  p o s s i b l e  t o  overcome t h e  l i m i t a t i o n s  imposed on low 
a l t i t u d e  use r s  by atmospheric a t t e n u a t i o n  by inc reas ing  t h e  source  power. 

S ince  it does not  appear  t o  be  poss ib l e  t o  overcome atmospheric 
a t t e n u a t i o n  i n  poor weather  a more a c c u r a t e  a n a l y s i s  w i l l  be made of t h e  
a t t e n u a t i o n  which could b e  expected on c l e a r  days i n  o rde r  t o  g ive  
r e l i a b l e  opera t ion  when t h e  system could be  expected t o  overcome t h e  
a t t e n u a t i o n .  The c u l c u l a t i o n  of t h e  o p t i c a l  p r o p e r t i e s  of a s t anda rd  
atmospherc huc bcon dono [ ~ p ]  us ing  one of t h e  s e v e r a l  s tandard  
atmospheres which have been developed [30, 311, 

The standard. &tmosphere corresponds t o  a c l e a r  day wi th  a v i s u a l  
range of about 20 km, a r e l a t i v e  humidity of' about  55% and a n  e x t i n c t i o n  
c o e f f i c i e n t  on t h e  o rde r  of 0 ,2  i n  t h e  middle of' t h e  v i s u a l  r eg ion  
(- 0 ~ 5 5 ~ ) .  The model is  v a l i d  on c l e a r  days wi th  some clouds provided 
t h e  t r ansmis s ion  pa th  does not pass  through t h e  clouds.  The t o t a l  
e x t i n c t i o n  c o e f f i c i e n t  i n  t h i s  model was t aken  t o  b e  t h e  sum of t h e  
c o e f f i c i e n t s  f o r  Rayleigh s c a t t e r i n g ,  a e r o s o l  ( ~ i e )  s c a t t e r i n g  and 
ozone absorp t ion .  The ozone abso rp t ion  c o e f f i c i e n t  is  very  s i g n i f i c a n t  
a t  c e r t a i n  wavelengths i n  t h e  v i s i b l e  reg ion ,  The Rayleigh s c a t t e r i n g  
c o e f f i c i e n t s  were computed us ing  t h e  atmospheric d e n s i t y  va lues  from 
r e f e r e n c e  [30] and experimental  measurements were used t o  f i n d  a 
model f o r  t h e  a e r o s o l  dens i ty .  The r e s u l t a n t  model f o r  a tmospheric  
a t t e n u a t i o n  is a s e r i e s  OF t a b l e s  f o r  22 wavelengths from 0.2'7 t o  
4 , 0 ~  i n  which t h e  i n d i v i d u a l  and t o t a l  a t t e n u a t i o n  coef f  i c i e n t s  a r e  
l i s t e d  f o r  1 km increments i n  a l t i t u d e  from 0 t o  50 km. I n  a d d i t i o n  
t h e  sums of t h e  t o t a l  a t t e n u a t i o n  c o e f f i c i e n t s  f o r  a l l  t h e  1 km 
regions above and below t h e  g iven  a l t i t u d e  a r e  l i s t e d  (denoted as t h e  
o p t i c a l  t h i ckness  f o r  h=.oo and 0-h) which a l lows  c a l c u l a t i o n  of t h e  
t ransmiss ion  f a c t o r  from t h e  g iven  a l t i t u d e  t o  i n f i n i t y  and ground 
l e v e l  t o  the  g iven  a l t i t u d e ,  r e s p e c t i v e l y ,  

Although t h e  s tandard  atmosphere d a t a  is  a p p l i c a b l e  only f o r  f a i r  
weather, it g ives  r e a s  onable r e s u l t s  f o r  t h e  nominal atmospher i c  
a"cenuation under normal opera t ing  cond i t i ons ,  The p r o p e r t i e s  of a 
c l e a r  atmosphere a r e  reasonably c o n s i s t e n t  s o  t h a t  systems which a r e  
designed t o  overcome t h e  a t t e n u a t i o n  predic ted  by t h e  c l e a r  s tandard  
atmosphere w i l l  normally opera te  i n  f a i r  weather,  The wide v a r i a t i o n s  
encountered i n  t h e  o p t i c a l  p r o p e r t i e s  of o t h e r  weather formations,  
e s p e c i a l l y  clouds,  rnake any a t tempt  t o  p r e d i c t  a nominal va lue  of 
a t t e n u a t i o n  u s e l e s s ,  



The t ransmiss ion  f a c t o r  f o r  v e r t i c a l  paths is r e l a t e d  t o  t h e  
o p t i c a l  th ickness  by 

where T = t ransmiss ion  f a c t o r  t o  the  s a t e l l i t e  

T = o p t i c a l  th ickness  f o r  the  des i r ed  a l t i t u d e  

and the  a t t e n u a t i o n  above 5O krr~ is assumed t o  be negl i-gible cornpared 
t o  t h a t  below 50 km. Since t h e  t ransmission f a c t o r  is not  a  func t ion  
of' t h e  angulur r eco lu t ion  t h e  GDOP f a c t o r  cannot b e  uncd t o  f ind  the  
t r a n s m ~ s s i o n  f a c t o r  f o r  users  not u t  t h e  s u b s a t e l l i t e  poin t .  Instead 
of using the  GDOP f a c t o r  t h e  o p t i c a l  th ickness  w i l l  be madc propor t ional  
t o  t h e  length  of t h e  ~ l a n t  path through t h e  atmosphere i n  which case  

where 8 is t h e  e l eva t ion  angle t o  t h e  s a t e l l i t e .  

0 
The formula is  accura te  f o r  e l eva t ion  angles  above 20 s ince  t h e  t r a n s -  
mission f a c t o r  f o r  elevat ioris  Mow 20' i s  much t o o  low and must be 
ca lcu la t ed  i n  a d i f f e r e n t  manner. Using t h e  t abu la t ed  va lues  [ 32 ]  f o r  
the  sum of t h e  t o t a l  a t t e n u a t i o n  c o e f f i c i e n t s ,  t h e  t ransmiss ion f a c t o r  
f o r  a  v e r t i c a l  path from a given he ight  t o  t h e  s a t e l l i t e  was ca lcu la t ed  
f o r  various wavelengths and t h e  r e s u l t s  a r e  p l o t t e d  i n  Figs .  18 and 19. 

The r e s u l t s  presented i n  Fig.  19 show t h a t  f o r  wavelengths g r e a t e r  
than 0.4~ i n  tl c l e a r  s tandard atmosphere a t  l e a s t  55% of t h e  t ransmi t ted  
energy w i l l  reach t h e  s a t e l l i t e  and from Fig .  18 over 91% of t h e  t r a n s -  
mitted energy w i l l  reach t h e  s a t e l l i t e  f o r  use r s  above 10 kn. The 
increased e f f e c t  of Rayleigh s c a t t e r i n g  a t  s h o r t  wavelengths is r e a d i l y  
apparent  but is  a l s o  i n t e r e s t i n g  t o  note t h a t  i n  a  c l e a r  atmosphere t h e  
use of t h e  nea r  in f ra red  region  as opposed t o  t h e  v i s i b l e  region  r e s u l t s  
i n  an  average increase  i n  t h e  t ransmission f a c t o r  of about 30$. The 
increase in t h e  t ransmiss ion  f a c t o r  is even l e s s  f o r  high a l t i t u d e  users .  
Using t h e  va lue  a = 0.2 i n  (2,6-1) and using t h e  Rayleigh atmospheric 
s c a l e  f a c t o r  g ives  a  t ransmission f a c t o r  of 0.20 f o r  A" 0.5511 which i s  
somewhat pess imis t i c  compared t o  t h e  value given i n  Fig. 19. The 
discrepancy may be due t o  the  f a c t  t h a t  a more accura te  d i s t r i b u t i o n  
f o r  t h e  atmospheric d e n s i t y  was used t o  ob ta in  t h e  r e s u l t s  i n  Fig. 19. 

I n  view of the  d a t a  presented, the  fol lowing conclusion seems 
reasonable. If t h e  required source power i s  ca l cu la t ed  neglec t ing  
atmospheric a t t enua t ion ,  then  the  use of a  source power a n  order  of 
magnitude l a r g e r  could reasonably be expected t o  overcome any atmospheric 
a t t e n u a t i o n  present  when the  system should be capable of operat ion.  A 
more exact  a n a l y s i s  of t h e  r e l a t i o n s h i p  between t h e  source power and the  
usefulness  of the  system would r equ i re  a s t a t i s t i c a l  a n a l y s i s  of t h e  
amount of cloud cover, t h e  th ickness  of t h e  cloud bank, and the  average 
a t t e n u a t i o n  coeff  i c  l e n t  i n  t h e  cloud, 



Transmission Factor 

FIGURE 18 CLEAR ATMOSPHERE T R A N S M I S S I O N  FACTOR AS A 
FUNCTION O f  A L T I T U D E  
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[my opt icul  uyi; toft1 i c  1lmLted by Lhc wuvclength of the  energy which forms 
the  image. Other l i m i t a t i o n s  on t h e  resolv ing  power of a n  o p t i c a l  
system a r e  due t o  imperfections i n  t h e  o p t i c a l  components which a r e  used 
i n  t h e  system. The methods used t o  analyze the  image r e s o l u t i o n  i n  
t h e  pass ive  case can a l s o  be used i n  t h e  a c t i v e  case by changing t h e  
wavelengths under cons idera t ion .  I n  t h e  a c t i v e  case the  wavelength of 
t h e  l i g h t  used w i l l  be assumed t o  be i n  t h e  v i s i b l e  or near  in f ra red  
region.  

3.4.1 Resolut ion i n  Diffract ion-Limited Systems 

Prom Sect ion  2.3.1 t h e  d i f f r a c t i o n - l i m i t e d  ground r e s o l u t i o n  is 
given by (2.3-2): 

where r - ground re so lu t ion  
8 

r = synchronous a l t i t u d e  s  
h = wavelength 

D = ob jec t ive  diameter,  

The ground r e s o l u t i o n  rg represen t s  t h e  minimum ground s e w r a t i o n  
which w i l l  r e s u l t  i n  a  p a i r  of images which w i l l  be on adjacent  scan 
l i n e s  of t h e  t e l e v i s i o n  camera output.  An evalua t ion  of (3.4-1) is  
given i n  Fig .  20. f o r  some t y p i c a l  parameter va lues  t h a t  might be 
encountered i n  t h e  a c t i v e  case. 

The r e s u l t s  given i n  Fig. 20 i n d i c a t e  t h a t  i n  t h e  a c t i v e  case  t h e  
ground r e s o l u t i o n  w i l l  average about f i v e  times b e t t e r  t h a n  i n  t h e  
passive case f o r  a  given ob jec t ive  l ens  diameter.  For example, i n  t h e  
cu:;c of a 1 - m  diameter' objec t ive ,  t h e  ground reco lu t  i or1 i n  t h e  passive 
case wuc ~ I O O  m while i n  t h e  a c t i v e  case (and h w  0 . 5 5 ~ )  t h e  r e s o l u t i o n  
w i l l  bc on t h e  order  of 60 m e  A s  u  r e s u l t  of t h e  increased o p t i c a l  
r e s o l u t i o n  i n  t h e  ac t ive -use r  s y s t  cml, t h e  to'tal system r e s o l u t  ion w i l l  
be essential.Ly t h a t  of the  nurriber oi' scan l i n e s  i n  t h e  t e l e v i s i o n  camera 
used. The use of a n  objec t ive  l ens  which provides an image of  much 
g r e a t e r  r e s o l u t i o n  than  t h e  r e so lv ing  power of the  t e l e v i s i o n  camera 
i s  j u s t i f i e d  because of t h e  increased s i g n a l  power t h a t  would be 
a v a i l a b l e  w i t h  a  l a r g e r  ob jec t ive  l ens .  Since thhc image r e s o l u t i o n  is 
determined by t h e  angular  r e so lv ing  power of the  ob jec t ive  Lens the  
ground r e s o l u t i o n  given i n  Fig.  20 must bc multipl-ied by t h e  GDOP factor ,  
F ig .  3, For user:; which a r e  not  a t  t h e  subsatell . j . te poilit. 

3.4.2 Te lev i s ion  Camera Limitat ions on 1icsolu.tion 

The t o t a l  angular  r e s o l u t i o n  of t h e  system can be no b e t t e r  than  
t h a t  of' t h e  t e l e v i s i o n  camera j3t (2.3-5) which i n  t u r n  can be no b e t t e r  
than  t h e  irnage r e s o l u t i ~ n  avaLlable @, (2.3-1). Wuat ing  t h e  two 



Ground Resolut ion ( km)  

(at Subsatellite Point ) 

FIGURE 26 DIFFRACTION L IMITED GROUND RESOLUTION 
VS. OBJECTIVE DIAMEEER 



reso lu t ion  l imi t s  gives the  point at  which increasing the  number of 
t e l ev i s ion  l ines  (or  lens diameter) w i l l  not r e su l t  i n  an increased 
system resolut ion provided the  lens diameter (or  number of t e l ev i s ion  
l i n e s )  i s  constant. Hence, 

FOV < 2.44 h - 
N -  D 

w hc: r ( 2  ll'OV = L'ic Ld-of-view i n  radiuns 

h -- wuvc1c:ngth i n  m 

N nurnber of TV l i ne s  

D = objective lens diameter i n  m, 

Equation (3.4-2) i s  p lot ted i n  Fig. 21  f o r  some typ i ca l  parameter ranges 
which might be encountered. (assuming t he  equali ty holds, i .e . ,  Pt = B ~ ) .  

For a given number of TV l i ne s  Fig. 21 can be used t o  f ind the  
minimum objective diameter necessary t o  give the  required resolut ion,or  
f o r  a given objective diameter ,the maximum number of t e lev i s ion  l i n e s  
which can be used with t h e  image formed can be found. Considering t e 
present s ta te-of- the-ar t  i n  high resolut ion te lev i s ion  cameras (- 10 
l i n e s )  a 1 - m  objective would provide more than su f f i c i en t  resolut ion 

t 
f o r  the camera tubes presently avdi lable .  The resolut ion l i m i t  in  t h e  
ac t i ve  user case w i l l  thus be detem~ined by the  number of t e l ev i s ion  
l i n e s  avai lable .  

The analysis  used t o  der ive  the  systcm resolut ion i n  t h i s  
sec t ion  has been bused on geometricul consideration of' the  minimum 
angular resolut ion.  An analysis  of' t h i s  type i s  mlicl provided t he  
received image i s  of' su f f i c i en t  in tens i ty .  A t  low illurninat ion levels  
it i s  a l s o  necessary t o  f ind the  quantum-limited resolving power of 
t h e  photoemissive or photoconductive surface being used a s  a detector  
[24, 251, If t h e  t o t a l  received e n e r a  i s  very low, the  resolut ion may 
not be t h a t  predicted by Figs. 20 and 21, An ana lys i s  of t h e  resolving 
power of t he  detector  surface w i l l  be made i f  a su i t ab l e  detector  and 
source combination i s  found t o  determine i f  the  resolut ion w i l l  be 
reduced s ign i f i c an t l y  below t h a t  predicted i n  Figs. 20 and 21. 

3.4.3 Refractive Index Variat ion and I t s  EXfect on Image Resolution 

The cha.nging index of re f rac t ion  of t he  medium a1 ong t he  transmission 
path w i l l  cause perturbations i n  the received s igna l  which w i l l  cause 
a degra.datior1 of the  irnage resolut ion.  Random changes i n  t he  index 01' 
r e f r ac t i on  a r e  caused by changes in  the atmospheric densi ty  which i n  
t u rn  a r e  caused by atmospheric turbulence, thermal gradients  and 
changes in  the atmospheric composition. Since the  e f f ec t s  of re f rac t ion  
general ly  increase a t  shor te r  wavelengths, it was considered necessary 
t o  compare the  r e l a t i ve  magnitude of the resolut ion l i m i t  due t o  
re f rac t ive  index changes with t h e  resolut ion l imi t s  due t o  other causes. 





"The amount of' wavefront d i s t o r t i o n  r e su l t i ng  from densi ty  and, hence, 
refractive index var ia t ions  through t he  atmosl~h(:re w i l l  ultimately 
limit 't;hc pcrl'or'rnance of a e r i a l  rcconnair,sancc :;yz toms, " [33] and the  
opt ica 1 nuvj @i l l  on cy ctcm l a  buaLcu1.l y un uarlu I rcconnuirdattrrce ny~tern. 

Hecent t i t u d i e ~  have shown t h a t  atmospheric turbulence places an 
absolute  l i m l t  on the  resolut ion t h a t  can be obtained with atmospheric 
transmission paths [34, 351. I n  these  s tud ies  it was assumed t h a t  
perfect  opt ica l  systems were ava i l ab le  and t h a t  the re  was no r e s t r i c t i o n  
on lens  diameter. I n  o ther  words t h e  system reso lu t ion  w a s  much b e t t e r  
than the  reso lu t ion  l i m i t  introduced by atmospheric turbulence. It 
was found t ha t  t h e  l i m i t  on ground resolut ion due t o  atmospheric 
turbulence is no worse than 5 t o  10 cm f o r  l i g h t  i n  t he  v i s i b l e  region 
and at a l t i t u d e s  above 10 km 135, p. 13841. Although t h e  reso lu t ion  
s t a t ed  above is f o r  v e r t i c a l  paths and would become worse f o r  s l a n t  paths 
the  e f f e c t  of atmospheric turbulence on reso lu t  ion is approximately four 
orders of magnitude l e s s  than t h a t  of the  d i f f r a c t i o n  l imi ta t ion .  For 
object ive  lenses of p r a c t i c a l  s i z e  and considering t he  reso lu t ion  needed 
f o r  a navigation system the  e f f ec t  of atmospheric turbulence i s  e n t i r e l y  
neg l ig ib le  fo r  p r a c t i c a l  purposes. Note t h a t  t h i s  statement does not 
mean t h a t  r e f r ac t i on  can be neglected, but  only t h e  changes i n  ref'rac- 
t i o n  due t o  atmospheric turbulence. 

3.5 Background Noise due t o  Reflected Sunlight 

I n  t h e  passive case it was found t h a t  t he  predominant source of 
background noise was t he  infrared energy emitted by t h e  ea r t h  and 
re f lec ted  sunl ight  was neglected. The ac t i ve  user, however, w i l l  make 
use of an energy source having most of i t s  energy i n  the  v i s i b l e  
o r  near infrared region,in which case re f l ec ted  sunl ight  w i l l  be t he  
predominant source of background noise. The infrared energy emitted by 
t h e  ea r th  and t h e  re f l ec ted  l i g h t  due t o  other stars w i l l  be neglected. 

The s p e c t r a l  d i s t r i bu t i on  of the  energy emitted by t he  sun is  
approximately t h a t  of a 5800% t o  6000% black body which i s  given i n  
Pig.  22 [lo,  p, 1631. The black body representa t ion i s  s u f f i c i e n t l y  
accurate  f o r  most purposes except i n  t h e  u l t r a v i o l e t  region below 0 . 3 ~ .  
Since t h e  surface  of the sun cons i s t s  of ionized gases with many 
elements present c e r t a i n  wavelengths may have a much higher energy 
content than  t h a t  predicted by Fig. 22 because of contributions by the  
individual  spec t r a l  l i n e s  of the elements. In  the p s s i v e  case it was 
assumed t h a t  r e f l e c t ed  sunl ight  could be neglected and from Fig. 22 it 
can be seen t h a t  over 9 6  of the  energy i n  sunlight  l i e s  below 2p. 
Cons i de r i r g  t h a t  t he  background energy from the  ea r th  's infrared 
rad ia t ion  was s u f f i c i e n t  t o  produce an  extremely low signai-to-noise 
r a t i o  introducing t h e  re f l ec ted  sunlight  would jus t  have produced 
somewh8,t worse r e s u l t s  in  t he  passive case. 

If t h e  predominant source of background noise i s  re f lec ted  sunl ight  
it is reasonable t o  expect t h a t  t he  power requirements of the  ac t i ve  
source w i l l  change g r ea t l y  from day t o  night .  The feas i b i 1 i . c ~  of an 
o p t i c a l  navigation system with ac t i ve  users may in f a c t  depend on when 
during the day o r  night  it is used and a system which can operate during 
the  day could a l s o  be expected t o  operate a t  night but  a t  a much lower 



FIGURE 22 APPRQXIMATE SPECTRAL DlSTRl BUTION 

OF SUNLIGHT 



power l eve l ,  The usefuLness of any s y ~ t e m  which w i l l  operate a t  night 
but not durring %ha tiuy L G  questionable. 

'li1i(: j )  I-OIJS c!rrt oJ' dr:-Lurmlning , 'IE~~J powor xc?cc: I vc:ci I'x'orr~ x.c:l' 1 i!ctcd 
r:un l i ghL ~ L J :  boc:u ~ o l v c d  prcvl.ou:~ly, KxtonaFvc* ree;u 1 t:; urc  avai.luble 
fo r  thr: roi'.l.cctccl uunlight received a t  a given dl.stance from a given 
pLunot [36,  373. The r e su l t s  of t h i s  study which a r e  applicable t o  a 
s a t e l - l i t c  a t  synchronous a l t i t u d e  orb i t ing  the  ea r th  a r e  given i n  Figa  23. 
The calcuLi.Lions a r e  based on the  assumptions t h a t  t he  sun i s  a 6 0 0 0 ~ ~  
black body and t h a t  t he  ea r th  has an albedo of 0.4. The albedo, or 
f r ac t i ona l  reflectance,  i s  the  r a t i o  of t he  t o t a l  re f lec ted  energy t o  the  
t o t a l  incident energy and by t h i s  de f in i t i on  it is  independent of t h e  
wavelength of t h e  l i g h t  involved. 

I n  determining the  ac tua l  spec t r a l  d i s t r i bu t i on  of the re f lec ted  
sunlight and n o t j u s t  t h e  t o t a l  energy received it i s  necessary t o  know 
how the  albedo changes with wavelength, The re la t ionsh ip  between the  
albedo and the wavelength of t he  incident l i g h t  i s  given i n  Fig. 24 
[37r Fig. 7-15]. The data presented i n  Fig. 23 can be modified t o  g ive  
the  i l lumination i n  a narrow spec t r a l  region by finding t h e  percentage 
of energy in  t he  desired spec t r a l  region fo r  a GOOOOK black body 
(approximately t h a t  given in Fig,  22) and then correcting t he  albedo 
from 0.4 t o  the  average albedo i n  the  region being considered. In  
other words: 

where I = i l lumination f o r  a narrow spec t r a l  region A 
IT = t o t a l  i l lumination given by Fig. 23 

= f r a c t i o n a l  amount of energy i n  t he  region being considered 
'S (obtained from Fig. 22) 

a = average ea r th  albedo i n  the  region being considered 
Fig. 24 

a = 0.4 = average t o t a l  ea r th  albedo. 

%!he phase angle is  t he  plane angle between t h e  u s c r - s a t e l l i t e  l i n e  
and the  user-sun l ine .  The phase angle geometry i s  i l l u s t r a t e d  i n  Fig. 25. 
The highest  phase angles a r e  found at  night  and t h e  change i n  background 
energy can be over r;even orders of rnagriitude from day t o  night.  
Concidcring the  wide range i n  thc  buckground noise the  source power 
required could al:;o be expected t o  vary g rea t ly  although no'b over such 
a vide range ar; the background nolue. IQorn thcac r e s u l t s  a reasonable 
vdlur: f o r  t he  tot+,] background energy received under the  wors L case 
conditionc i s  10'3 w /cm2 which i s  the vttluc t h a t  w i l l  be used "c ca lcu la te  
the tnaximutn source power required, 

In  the  passive case a large  port ion of the  background energy was 
constant and could be f i l t e r e d  out and thus neglected. Unfortunately i n  
the ac t i ve  case no such reduction i s  possible fo r  severa l  reasons. The 
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v a r i a t i o n s  i n  t h e  t o t a l  background energy cannot b e  t r e a t e d  simply as 
changes i n  t h e  e f f e c t i v e  temperature of t h e  background as i n  t h e  pass ive  
case .  The va r ious  poss ib l e  backgrounds such as clouds,  land masses and 
t h e  oceans have r a d i c a l l y  d i f f e r e n t  r e f l e c t i v e  p r o p e r t i e s  when cons ider ing  
smal l  a r e a s .  The albedo,  or  average r e f l e c t a n c e ,  of 0.4 is only a 
r e p r e s e n t a t i v e  va lue  ahen taken over l a r g e  a r e a s  and w i l l  not  n e c e s s a r i l y  
hold when comparing small a r e a s  of t h e  s i z e  t h a t  each r e so lvab le  image 
element i s  l i k e l y  t o  r e p r e s e n t ,  The v a r i a t i o n  i n  t h e  amount of r e f l e c t e d  
l i g h t  i s  r e a d i l y  apparent  by observing some of t h e  colored photographs of 
t he  e a r t h  t h a t  have been s e n t  back from s a t e l l i t e s  ( s ee  [l>] f o r  example). 
Some of t h c  cloud bunks appear  whi te  while  some of t h e  land masses appear  
durk  brown or  almost b l ack  i n d i c a t i n g  not  only u change i n  t h e  amount of 
r e f l e c t e d  energy b u t  a l s o  a signil 'Lcuntly d i f f c r e r i t  s p e c t r a l  cornposition. 
Hence it is not  poss ib l e  t o  conclude t h a t  t h e r e  w i l l  be a given cons tan t  
amount of background energy on each r e so lvab le  image elemen'c which can be  
f i l t e r e d  out and, t he re fo re ,  it w i l l  be necessary t o  cons ider  t h e  t o t a l  
amount of r e f l e c t e d  s u n l i g h t  as t h e  e f f e c t i v e  background r o i s e .  

As was t r u e  i n  t h e  pass ive  case  t h e  f r a c t i o n  of t he  energy inc iden t  
on t h e  o b j e c t i v e  l e n s  which i s  a c t u a l l y  focused on t h e  d e t e c t o r  w i l l  depend 
on t h e  f ie ld-of -v iew.  The explana t ion  f o r  t h e  dependence of t h e  background 
no i se  on t h e  f ield-of-view was g iven  i n  Sec t ion  2.7. While t h e  exac t  
d i s t r i b u t i o n  of t h e  background no i se  i n  t h e  image focused on t h e  d e t e c t o r  
w i l l  depend on b o t h  t h e  p'mse angle  and t h e  f ie ld-of -v iew a simplification 
is poss ib l e  i n  t he  worst case.  The worst-case s i t u a t i o n  i s  a f ie ld-of-view 
s u f f i c i e n t  t o  observe t h e  e n t i r e  e a r t h  and a phase ang le  of 0'. While t h e  
phase ang le  w i l l  vary w i t h  t h e  t ime of day t h e  f ie ld-of-view i s  cons tan t  zo 
t h a t  i f  t h e  background no i se  i s  ca l cu la t ed  a s  a Sunct ion of t h e  f i e l d - o f -  
view w i t h  a, phase a n g l e  of 0°, t h i s  w i l l  g ive  the  maximum background noise  
denc i t y  . 

Thc t~:~,chgrourld no i se  power is p ropor t iona l  Lo thc  c i z c  of t hc  pro,jccted 
a r e a  observed by t h e  sa"clli"cc. The f r a c t i o n  of' t h e  t o t a l  background no i se  
which i s  a c t u a l l y  i.ncident on t h e  d e t e c t o r  i s  thus  equal  t o  t h e  r a t i o  ol' t h e  
projected a r e a  observed t o  t h e  t o t a l  p ro jec ted  a r e a  on which t h e  r e f l e c t e d  
sun l igh t  c a l c u l a t i o n s  were based. The f ie ld-of -v iew o r  t h e  diameter  of t h e  
maximum observable reg ion  determines t h e  s i z e  of t h e  pro jec ted  a r e a  observed. 
The pro jec ted  a r e a  of t h e  observable region,  t h e  plane a r e a  pro jec ted  i n  
t h e  d i r e c t i o n  of t h e  s a t e l l i t e ,  is 

where A = projec ted  a r e a  corresponding t o  t he  maximum observable 
reg ion  

r = r ad ius  of t h e  e a r t h  
e  

GCD = diarnetcr of t h e  rnaxirnurn observable reg ion  (@-eat c i r c l e  
d i s t a n c e ) .  

The t o t a l  r e f l e c t i n g  a r e a ,  &by, used i n  t h e  r e f l e c t e d  sun l igh t  c a l c u l a t i o n s  
is  approxirmtely equa l  t o  t h e  plane a r e a  pro jec ted  by one hemisphere 
which is 



Thc f r a c t i o n u l  amount of t h e  energy inc ident  on t h e  ob jec t ive  l ens  
which is a c t u a l l y  focused on t h e  de tec to r  is  thus 

- A 2 GCD 

P f - % =  
s i n  [%) 

and modifying t h e  r e s u l t  previously obtained, (3 .5 - l ) ,  g ives  

where Ih is  t h e  amount of $he background noise  a c t u a l l y  inc ident  on t h e  
de tec to r .  

3.6 A Comparison of Various High Power Light Sources 

A l a rge  v a r i e t y  of l i g h t  sources capable of high power output have 
been developed inc luding a r c  discharge lamps, xenon f l a sh tubes  and l a s e r s .  
Each of these  poss ib le  a c t i v e  sources llas var ious  advantages and 
disadvantages i n  terms of cos t ,  power, e f f i c i ency ,  r e l i a b i l i t y ,  e t c .  
A thorough ana lys i s  of t h e s e  sources has been performed [38-411 and t h e  
d a t a  presented w i l l  be used t o  compare t h e  poss ib le  a c t i v e  sources 'by 
means of an example, The primary cons idera t ion  i n  s e l e c t i n g  a n  a c t i v e  
source w i l l  be t h e  s ignal - to-noise  r a t i o  which can be achieved i n  a 
t y p i c a l  system. 

Since t h e  sun rep resen t s  a wideband no i se  source, it seems 
reasonable t o  expect t h a t  t h e  l a s e r  wi th  i t s  very  narrow s p e c t r a l  output  
w i l l  g ive  the  h ighes t  s ignal - to-noise  r a t i o ,  The l a s e r  however, has t h e  
disadvantage of being r e l a t i v e l y  more expensive than some of t h e  o ther  
poss ib le  sources,  

The d a t a  which w i l l  be p r e ~ e n t e d  is intended t o  g ive  a n  ind ica t ion  
of 77hat  i s  c u r r e n t l y  avaih ib le  i n  t h e  f i e l d  of high power l i g h t  sources.  
The d a t a  g Fven i n  references  638-413 were obtained pr imar i ly  from 
manufacturers5 da ta  and may not  represent  t h e  Lates t  research  developments. 
Most of t h e  high power l i g h t  sources c u r r e n t l y  a v a i l a b l e  were designed 
f o r  some s p e c i f i c  purpose and t h e r e  a r e  no apparent  t h e o r e t i c a l  reasons 
why more powerful sources could not  be developed i f  needed. The primary 
l i m i t a t i o n s  t o  the  s i z e  of o p t i c a l  sources a r e  p r a c t i c a l  ones such a s  t h e  



cost  and s i z e  of t he  power supply needed and t h e  problem of removing t he  
thcrrnul. cncrgy gcncrutcd during oparat ion. Both cont i n u o u ~  duty and 
pulsed oourcea w i l l  bc considcrcd. 

I n  order t o  compare t h e  various types of l i g h t  sources some uniform 
bas i s  of comparison must be determined. The basis  t h a t  w i l l  be used 
w i l l  be t he  signal-to-noise r a t i o  which can be a t t a ined  i n  an aerospace 
te lev i s ion  system which has been successful ly  operated i n  space. Before 
t h i s  comparison can be made, t h e  methods used t o  r a t e  t he  l i g h t  output 
of a source must be examined. The l i g h t  output of a given l i g h t  source 
[nay be expressed in  e i ther  candlepower or  lumens. The term candlepower 
r e f e r s  t o  t h e  luminous i n t ens i t y  or l i g h t  radia t ing capacity i n  a 
given d i rec t ion  and i s  expressed i n  candelas (cd). The term lumen 
( lm)  r e f e r s  t o  t h e  t o t a l  luminous f l ux  emitted i n  a uni t  so l i d  angle 
and i s  re la ted  t o  t he  luminous i n t ens i t y  by: 

where F = luminous f l ux  i n  Im 

I = luminous i n t ens i t y  i n  cd 

dl;2 = so l id  angle d i f f e r e n t i a l .  

A complete descr ipt ion of the  l i gh t  output of a  source would consis t  of 
specifying t h e  l i g h t  output i n  a l l  d i rec t ions  from the source but t h i s  
involves a  great  dea l  of data  and normally only the  candlepmer i n  t h e  
in%ended d i rec t ion  of operation or  t he  t o t a l  lumens i s  given. For 
sources with a highly d i r ec t i ve  output t h e  candlepower r a t i ng  given i s  
usually e i t h e r  tha t  of t h e  center of t he  beam or the  average over t h e  
useful  regicsl of the  beam. In  t h e  case of pulsed sources the  l i g h t  
output may be expressed i n  lumen seconds which i s  t he  time i n t eg ra l  
of t he  i n t e n s i t y  over tk pulse duration.  It should be noted t ha t  t h e  
ra t ing  of l i g h t  sources i n  terms of watts  usually r e f e r s  only t o  the  
input power and cannot be d i r e c t l y  re la ted  t o  t he  l i g h t  output. 

I n  t h e  case where t h e  d i rec t ion  of t h e  desired receiver  is known, 
then t h e  a b i l i t y  of a source t o  produce a  narrow bearn of l i g h t  must be 
analyzed, The pract ice  of providing only t h e  maximum or  average l i g h t  
output r a t i ngs  makes it d i f f i c u l t  t o  determine the  exact bearn i n t ens i t y  
which could be obtained, but t he  following s impl i f icat ion w i l l  normally 
su f f i ce ,  The so l id  angle over which the  l i g h t  output ra t ing  i s  given 
can e i t he r  be estimated or calculated from the  specif icat ions  of t h e  
source. I f  t h i s  source i s  then put i n t o  an op t i ca l  system which 
concentrates a l l  the  Light output i n to  a beam of a  d i f f e r e n t  s ize ,  t he  
i n t ens i t y  of t h e  new beam w i l l  be increased or decreased by t he  r a t i  o of 
t h e  so l id  angle of t h e  new beam t o  t ha t  of t h e  o r ig ina l  l i gh t  output. 
This procedure makes it possible t o  compare l i g h t  sources of d i f f e r en t  
shapes and power by a r e l a t i ve ly  easy method. A summary of t h e  
important charac te r i s t i cs  of t he  sources which w i l l  be considered is 
given i n  the  following sect ions ,  



3.6.1,l Incandescent lamps 

One of t he  most common sources of l i g h t  is  t h e  incandescent Lamp 
which is  avai lable  i n  thousands of va r i e t i e s .  One of t h e  l a rges t  lamps 
of t h i s  :ype has an input power r a t i ng  of 10 kW and u l i gh t  output of 
3.3 x 101 l r n  []b.l, p, 8-77]. The highest power incandesccnt lamps a r e  
those designed f o r  use with parabolic r e f l ec to r s  or Fresnel  lenses as 
searchl ights .  A l-kW incandescent lamp used i n  comb~nation w i  h a 36" 8 r e f l e c t o r  p r~duced  a beamwidth of 4' a t  an i n t ens i t y  of 3 X 10 cd [41, 
p .. 18-10] so it is not unreasonable t o  assume that with a igher power 8 lamp and a smaller beamwidth a luminous i n t ens i t y  of 1 X 10 cd could 
be obtained. The spec t ra l  output of incandescent lamps with tungsten 
fi laments i s  approximately that of a black body with an emissivity of 
0e3-0,5 at a temperature of 1600°K t o  3300°K. A t  3300'~ t h e  peak 
output occurs a t  approximately lp ,  but over 70% of the  energy produced 
l i e s  below 1 . 7 ~ .  The exact spec t r a l  densi ty  w i l l  vary from the  
predicted densi ty  because t h e  emissivity i s  not constant and, a l so ,  t h e  
l i g h t  output w i l l  be modified by t h e  spec t r a l  transmission cha rac t e r i s t i c s  
of the  g lass  envelope. 

3.6.1.2 Arc discharges (continuous operation) 

The e l e c t r i c a l  a r c  discharge represents the  highest  paw'er p r a c t i c a l  
l i g h t  source yet  developed f o r  continuous operation. The most common 
form of a r c  discharge used f o r  extremely high power l i gh t  sources is 
t h e  unenclosed carbon a rc .  Other elements commonly used f o r  enclosed 
a r c  d i s c b r g e  lamps a r e  mercury, sodium and xenon, The input power t o  
t he  enclosed discharge lamps i s  limited by t h e  a b i l i t y  of t h e  g lass  
envelope t o  d i ss ipa te  t h e  heat produced by t h e  a rc .  The carbon a rc ,  
however, does not require  enclosed operation and can be operated a t  much 
higher power l eve l s .  I n  some instances the  heat  generated i s  so  in tense  
t ha t  only water-cooled operat ion i s  possible. 

Arc discharges i n  sodium vapor produce 8, very d i s t i nc t i ve  l i g h t  
output because of t h e i r  very narrow s p e c t r a l  output. Almost t h e  
en t i r e  output of a sbdiun vapor lamp i s  concentrated i n  the  double 
yellow l i n e  located a t  0.5890p and 0 . 5 8 9 6 ~ ~  which makes these lamps 
unsuitable f o r  uses where color  reproduction is important. Lamps of 
t h i s  type a r e  normally used only f o r  s t r e e t  l igh t ing  where a d i s t i n c t i v e  
color is  desired t o  indicate  spec i a l  hazards such a s  a t  i n t e r s e c t i  ns. 
The t y p i  a 1  l i g h t  output f o r  such uses i s  on the  order of 1.0 X 1OC t o  fi 4,0 X 10 h. While the  avai lable  l i g h t  output is not nearly as g rea t  
a s  t h a t  of other a r c  lamps the  narrow spec t r a l  output w i l l  allow use 
of a very narrow opt ica l  region thus reducing t h e  background noise 
s ign i f ican t ly ,  

Mercury vapor a r c  lamps a r e  current ly  t h e  most widely used enclosed 
a r c  lamp and f ind t h e i r  main application i n  s t r e e t  l ight ing.  For spec i a l  
appl icat ions  water cooled types a r e  avai lable  with an input power r a t i ng  
of over 12 kW and a l i gh t  output of approximately 1.0 X lo6 lm [42]. The 
spec t r a l  output of a r c  discharge lamps depends t o  a g rea t  degree on the  
pressure of t he  gas i n  which t h e  discharge occurs. As t h e  gas pressure 
1s increased, the  spec t ra l  d i s t r i bu t i on  tends t o  become a continuum a s  
t he  cha rac t e r i s t i c  spec t r a l  l i ne s  tend t o  become wider. "The broadening 



of t h e  spec t r a l  l i ne s  is  caused by the  broadening of t h e  energy levels  
due t o  the  f i e l d s  of neighboring atoms and col l id ing e lect rons  ..." and 
"The continuous spectrum i s  due primarily t o  f r e e  e lect rons  combining 
with ions, an evcnt whose probabi l i ty  is  s ign i f ican t  under t h e  
conditions of high e lect ron and ion dens i t i es  exis t ing i n  t he  arc"  
[40, p. 2081. The pressure used i n  most high pressure mercury a r c  lamps 
is such t h a t  t h e  output radia t ion i s  almost evenly divided between t he  
l i n e  spectra  and the  continuous spectra  [40, p. 2111. 

For p r ac t i c a l  purposes a l l  of the energy emitted by mercury vapor 
lamps can be assumed t o  l i e  i n  t h e  0,35 t o  0 . 6 ~  region. The absence of 
any s ign i f i c an t  rad ia t ion  above 0 . 6 ~  accounts f o r  t he  cha rac t e r i s t i c  
blue-white color of mercury vapor lamps, While a s ign i f i c an t  amount of 
u l t r av io l e t  energy i s  produced t h e  majority of t h i s  energy i s  absorbed 
by t h e  g lass  enclosure. The locat ion of t he  s p e c t r a l  l i ne s  of g rea tes t  
s ignif icance i s  given in  Appendix D. The large number of spec t r a l  
l i ne s  which a r e  present rmkes i t  impossible t o  construct  a f i l t e r  which 
would r e j e a t  t h e  background energy between t he  spec t r a l  l i ne s  and accept 
only t h e  energy present i n  t h e  spec t r a l  l ines .  

Xenon a r c  discharge lamps have a much smoother spec t r a l  output i n  
t h e  v i s i b l e  region and a r e  used i n  appl icat ions  such a s  motion pic ture  
projectors and so l a r  simulators where color  reproduction is important. 
Iamps w i t  an input power r a t i ng  of 20 kW and a l i g h t  output of g 1.15 X 10 Im a re  current ly  ava i lab le  [42]. The s p e c t r a l  output i n  
t h e  region 0.4 t o  0,8p i s  sornetimes constant t o  within * 15% depending 
on t h e  pressure of the gas [40, p, 2141 and makes t h e  xenon a r c  lamp 
appear t o  be a white l i g h t  source. I n  t h e  region 0.8 t o  1 . 0 ~  a number 
of spec t r a l  l ines  doubles t h e  average spec t r a l  output as compared t o  the  
v i s  i b l e  region. 

The unenclosed carbon a r c  represents t he  highest  power continuous 
l i g h t  source ava i lab le  a t  the  present time. The s i z e  of t h e  r e f  l ec to rs  
used and the  input power required fo r  t h e  l a rges t  carbon a r c s  would 
prevent theFr use on a l l  but t h e  l a rges t  ships a s  shown by t h e  following 
example. A searchlight  developed f o r  t h e  Army used a 120 inch parabolic 
r e f l e c t o r  and produced a beam divergence of b0 by 6 O .  The peak l i g h t  
output of t h i s  searchl ight  was 2.7 X 109 cd and required an input power 
of 600 kW a t  a current  of 4000 fl 4 p, 18-10 1. Some t y p i c a l  
examples of carbon a r c s  of a more p r ac t i c a l  s i z e  a r e  given i n  Table 5. 
The spec t r a l  output of a carbon a r c  lamp i s  approximately t h a t  of a 
black body a t  the  color  temperature l i s t e d  i n  Table 5. I n  t h e  v i s i b l e  
region black bodies of t he  color  temperatures given have a f a i r l y  f l a t  
spec t r a l  output which rmkes t h e  carbon a r c  su i t ab l e  f o r  photographic 
and projection purposes which require  a  white l i g h t  f o r  t r u e  color 
reproduct ion, 

The black body spectrum approximation holds only f o r  those  carbon 
a r c s  where t h e  l i g h t  i s  produced by t h e  incandescent c r a t e r  of' the  
e lect rode and t h e  luminous vapors created by t h e  vaporization of t h e  
electrode.  Another type of carbon a r c  lamp i s  the  flame a r c  lamp which 
uses carbon electrodes but depends mainly on the  vaporization of t h e  
electrodes f o r  l i gh t  production. The color temperature of flame type 
carbon a r c s  is two t o  four  times t ha t  of the carbon a r c s  given i n  Table 5, 
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and t h e  spectrum no longer  corresponds a c c u r a t e l y  t o  a b l ack  body spectrum 
a t  t h e  co lo r  temperature.  The spectrum of flame-type carbon a r c s  is  
usua l ly  modified t o  produce increased  output i n  some d e s i r e d  r eg ion  by 
adding r a r e  e a r t h  elements t o  t h e  e l e c t r o d e s .  

3.6.1.3 Flash tubes  : a r c  d i scha rges  (pulsed ope ra t ion )  

The a r c  d ischarges  j u s t  descr ibed  were used f o r  continuous opera- 
t i o n .  Arc d ischarges  can a l s o  be used f o r  pulsed ope ra t ion  which i s  
normally done by d i scha rg ing  a c a p a c i t o r  a c r o s s  a s p a r k  gap i n  a h igh  
p re s su re  atmosphere. The gas- f i l l ed  tubes  which a r e  used f o r  t h i s  
purpose a r e  c a l l e d  f l a s h t u b e s .  Pulsed operat  ion of carbon a r c  
d i scha rges  is very d i f f i c u l t  due t o  t h e  f a c t  t h a t  a s t a b l e  a r c  cannot 
be obtained i n  t h e  s h o r t  t ime r equ i r ed .  

The hea t  d i s s i p a t i o n  requirements  f o r  pulsed opera t ion  a r e  much l e s s  
severe  and very  h igh  peak outputs  can  be  obtained a t  very  low power 
d i s s i p a t i o n  l e v e l s .  F h s h t u b e s  a r e  normally r a t e d  f o r  bo th  peak and 
average power l e v e l s .  The peak power r e s t r i c t i o n  is necessary because 
the  seve re  shock of t h e  a r c  d ischarge  can s h a t t e r  t h e  g l a s s  enc losure  of 
t h e  f l a s h t u b e  i f  t h e  wdl l s  of' t h e  t u b e  a r e  t o o  t h i n ,  The peak power 
r a t i n g  rnay be as much as f o u r  o rde r s  of magnitude l a r g e r  t h a n  t h e  
average  power r a t i n g ,  bu t  t h i s  g e n e r a l l y  occurs  only f o r  very narrow 
pulse  wFdthc. 

F b s h t u b e s  normally c o n s i s t  of t h r e e  e l ec t rodes ,  two of which a r e  
used t o  conduct t h e  a r c  cu r r en t  w i th  t h e  t h i r d  being used t o  ' t r igger  t he  
d i scha rge .  A t y p i c a l  c i r c u i t  f o r  use w i t h  f lash ' tubes cor i s i s t s  of a 
pulse  forming network which i s  discharged through t h e  f l a s h t u b e  w i t h  t h e  
energy f o r  t h e  d ischarge  being provided by t h e  charge s to red  i n  t h e  



capac i to r s  of t h e  pulse forming network. The pulse forming network 
determines the  shape of t h e  cu r ren t  pulse, and hence t h e  shape of t h e  
1.L~t;ht output pu 1-oc:, Thc output pulac Lo t r iggc rcd  by a p ~ ~ l y i n g  a high 
voltuge pulse t o  t h e  t r i g g e r i n g  e lec t rode  which i n i t i a t e s  the  e l e c t r i c a l  
discharge.  The vol tage  supplied t o  the  pulse forming network must be 
l e s s  than  t h a t  requi red  t o  i n i t i a t e  e l e c t r i c a l  breakdown between t h e  
e l ec t rodes  without a t r i g g e r i n g  pulse. The pulse d u r a t i o n  is determined 
by t h e  c h a r a c t e r i s t i c s  of the  pulse forming network and t y p i c a l  values 
range from 1 ps t o  10 m s .  

Flashtubes a r e  c l a s s i f i e d  i n t o  types according t o  the  phys ica l  
conf igura t ion  of t h e  l i g h t  emi t t ing  sec t ion  and f o u r  d i f f e r e n t  shapes 
a r e  commonly used; h e l i c a l ,  l i n e a r ,  sphe r i ca l ,  and U-shaped. Flashtubes 
a r e  normally f i l l e d  wi th  t h e  r a r e  gas xenon, but argon, krypton, and 
o ther  gases a r e  a l s o  used, The s p e c t r a l  output of these  tubes  is 
usua l ly  a continuum and any s p e c t r a l  l i n e s  t h a t  a r e  present  a r e  q u i t e  
wide. When xenon i s  used t h e  s p e c t r a l  output is f a i r l y  f lat  i n  t h e  
v i s i b l e  region  wi th  a s l i g h t l y  higher  output i n  t h e  0.8 t o  1 .1~ region 
due t o  the  presence of s e v e r a l  s p e c t r a l  l i n e s .  Some examples of t h e  
performance of c u r r e n t l y  a v a i l a b l e  f l a sh tubes  a r e  given i n  Table 6. 

Arc dicchargea i n  unconfined gases have a l s o  been used as pulsed 
l i g h t  sources b u t  t h e  c a p a b i l i t i e s  of such d ischarges  a r e  norrnally below 
those  of the  f l a s h t u b e  and w i l l  not  be discussed.  

Table 6 

TYPICAL FLASmUBE CHARClCTERISTICS [38, p. 49; 43, 441 

Light 1 Peak 
Emission 1 Emission 1 Durati 

Arc 
Res is tance 
(ohms ) 

A l l  the  l i g h t  sources discussed s o  f a r ,  wi th  t h e  exception of t h e  
sodium vapor lamp, produced energy over a wide s p e c t r a l  region which 
make it impossible t o  f i l t e r  out a  s i g n i f i c a n t  po r t ion  of t h e  background 
energy. The l a s e r  has a  d i s t i n c t  a d ~ d n t a g e  i n  t h a t  i t s  s p e c t r a l  output  
occupies only a very  narrow s p e c t r a l  region so  a  s i g n i f i c a n t  po r t ion  of 
t h e  background energy can be removed. Very narrow beamwidths make it 



poss ib le  t o  concent ra te  t h e  energy a v a i l a b l e  i n  t h e  des i red  region t o  a 
much g r e a t e r  ex tent  t h a n  is poss ib le  wi th  incoherent  sources.  While 
t h e  average power of most present  l a s e r  systems is much l e s s  than t h a t  
of o the r  l i g h t  sources, t h e  peak power a v a t l a b l e  is much g r e a t e r .  Peak 
powers on t h e  order  of 10 TW ( 1  X 1013 W )  have been reported f o r  narrow 
pulses [by ,  461. One important disadvantage of l a s e r  systems is t h e  
r e l a t i v e l y  high c o s t  compared t o  o ther  l i g h t  sources.  

A Gurnmry of the major i ty  of commercially a v a i l a b l e  l a s e r s  has been 
compiled [39]. Thc r e s u l t s  of t h i s  s,tudy,which a r e  r cp rcsen ta t ive  of 
t h e  m r i o u s  typcrj of l a s e r s  amik ; \b le ,u re  prenanted i l l  t h e  fol lowing 
t a b l e s .  I n  gene ra l  t h e  d a t a  presented show t h a t  t h e  rt~ttxirnum CW power 
l e v e l  ranges from tz few wa t t s  up t o  t h e  k i lowat t  l e v e l  depending on t h e  
wavelength, and hence t h e  m a t e r i a l  used in  t h e  opera t ion  of the  l a s e r .  
I n  pulsed operat ion t h e  peak power depends on the  pulse width but  f o r  
extremely narrow pulses,  on t h e  order  of 10-12 s ,  power l e v e l s  i n  t h e  
gigawatt range a r e  a v a i l a b l e .  The d a t a  presented a r e  r ep resen ta t ive  
only of present  commercial l a s e r s  and the  g r e a t  amount of research  
c u r r e n t l y  being done in  t h i s  a r e a  w i l l  provide higher  powers and more 
wavelengths i n  the  near  f u t u r e .  A study has r e c e n t l y  indica ted  t h a t  a 
C02 l a s e r  which operates  a t  1 0 . 6 ~  with a continuous parer  output  of 
8,8 kW has been constructed and a n  order-of-magnitude increase  i n  t h e  
power could be expected i n  t h e  near f u t u r e  [47]. While t h i s  wavelength 
is  much t o o  long f o r  use w i t h  present  t e l e v i s i o n  camera tubes,  it  
i n d i c a t e s  t h e  p o t e n t i a l  power a v a i l a b l e  from gas l a s e r s  is  much g r e a t e r  
than t h e  power now a v a i l a b l e .  I n  a d d i t i o n  t o  changing the  wavelength of 
a l a s e r  by changing t h e  elements used, it i s  a l s o  possibl-e t o  tune a 
l a s e r  over a given region.  Jkperiments have a l r eady  shown t h a t  a l a s e r  
can be tuned t o  a c e r t a i n  ex ten t  and it seemed 1 ike ly  t h a t  some l a s e r s  
could be tuned t o  cover ha l f  t h e  v i s i b l e  region C4.83. 

Table 7 

GAS LASERS 

Out put 
Spec t rumH 

Multimode Pulse Length Beam 
Power o r  Divergence 
Output (w) CW (mrad ) 

* I d e n t i f i e d  i n  Appendix E. 

** See Appendix D f o r  loca t ion  of s p e c i f i c  s p e c t r a l  l i n e s .  



Table 8 

SOLID-STATE IASERS 

e 

Table 9 

INJECTION LASERS 

Opt ical  F i l t e r s  

The generation of an  op t i c a l  s igna l  with well-defined s p e c t r a l  
l i m i t s  immediately presents the  problem of recovering t h a t  s i g n a l  from 
any background noise t h a t  may be present when t he  s i gna l  is  received. 
I f  an o p t i c a l  f i l t e r  which w i l l  recover the  o r i g i n a l  s i gna l  while 
re jec t ing  t h e  background noise is not  ava i l ab le ,  then nothing has been 
accomplished by using a spec t r a l l y  well-defined signa L t h a t  could not 
have been accomplished by using a higher power source. The problem of 
choosing an o p t i c a l  energy source f o r  informatiorl transmission is thus 
inherent ly  r e h t e d  t o  the  a v a i l a b i l i t y  of f i l t e r s  t o  rccovcr the source 
energy while r e j e c t i ng  a s i gn i f i c an t  port ion ol' the  background energy. 

Opt ical  f i l t e r s  a r e  constructed i n  a va r i e t y  of ways. The 
determination of' the  best  op t i c a l  f i l t e r  t o  do a spec i f i c  t a sk  is 
dependent on how wel l  the  problem i s  speci f ied .  The simplest op t i c a l  

* See Appendix E. 



f i l t e r s  a r e  those which consis t  of some type of o p t i c a l  rmter ia l .  
Optical  mater ia ls ,  such a s  g lass  and p l a s t i c ,  have d i f f e r en t  inherent  
transmiss ion character  is t i c s ,  which can be changed by changing the  
composition of the  material .  Considering the  many d i f f e r en t  g lass  and 
p l a s t i c  compositions which a r e  ava i l ab le  a l a rge  va r i e t y  of f i l t e r  
cha r ac t e r i s t i c s  can be obtained. mny o p t i c a l  mater ia ls  have the  
property t h a t  l i g h t  above a ce r t a i n  wavelength or below a ce r t a i n  wave- 
length i s  absorbed. A bandpass f i l t e r  can then be constructed by 
combining two materials  of the  type j u s t  mentioned. Optical  f i l t e r i n g  
can a l s o  be accomplished by using spec i a l  coatings applied t o  the lenses 
of an  o p t i c a l  system. The a b i l i t y  of an o p t i c a l  coating t o  provide a 
f i l t e r i n g  ac t i on  Es dependent on t h e  a c t u a l  transmission cha rac t e r i s t i c s  
of t h e  coating, t he  thickness of the  coating, and the wavelength 
dependent ref lec tance of t h e  coating material .  F i l t e r s  constructed 
by these  methods generally have a passband transmission of approximately 
5W$ and a ctopband transmission of 0.1%. The number of spec i f i c  combina- 
t i ons  of op t i c a l  mater ia ls  and coatings i s  s o  l a rge  t h a t  only by 
considering a spec i f i c  problem or  appl ica t ion can t h e  a c t u a l  f i l t e r  
cha r ac t e r i s t i c s  be determined, 

Another type of op t i c a l  f i l t e r  i s  the f i l t e r  which operates using 
the  in terference phenomena and i s  general ly  known a s  an inter.ference 
f i l t e r  [3, p. 2863. The performance of t h i s  c l a s s  of f i l t e r s  is  much 
be t t e r  than those discussed previously and f i l t e r s  can be constructed 
which w i l l  s e l e c t  a s ing le  spec t r a l  l i ne .  The performance of a s e t  of 
commercially ava i l ab le  in terference f i l t e r s  f o r  se lec t ing  some t y p i c a l  
l a s e r  l i ne s  is given in  Table 10 [493. The extremely narrow passband 
of these  f i l t e r s  allows almost complete r e j e c t i on  of a l l  l i g h t  energy 
except the  desired s ignal .  In terference f  i l t e e r  can a l s o  be constructed 
with wider bandwidths. F i l t e r s  which have a bandwidth g rea te r  than 1% 
of t he  passband center  wavelength have transmissions which a r e  usual ly  
on t he  order of 60% while t h e  stopband transmission i s  l e s s  than 0.01% 
Csol. 

Table 10 

INTERFERENCE FIEPEA% FOR COMMON MSEII WAVEZEXGTHS 
-- -- 

Transmiss ion Transmission 
Wavelength (p) Bandwidth (p) a t  Center of i n  

Pas sband S t  opband 



I n  general  op t i ca l  f i l t e r s  can be constructed which w i l l  have a t  
l e a s t  50% transmission i n  t h e  passband and a t  most 0.01% transmission i n  
t he  stopband using one of the  methods previously described. 

I n  order t o  evaluate t he  various types of l i g h t  sources, some uniform 
means of comparison must be found. Since t he  op t i ca l  navigation system 
being considered w i l l  make use of a te lev i s ion  camera, one method of 
comparison would be t o  choose an a c t u a l  t e lev i s ion  system and determine 
which source w i l l  give the best  r e su l t s .  The te lev i s ion  system t h a t  w i l l  
be used i n  the  comparison is t h e  Surveyor t e lev i s ion  system. The 
Surveyor 7 spacecraft  has a l ready detected op t i ca l  s ignals transmitted 
t o  t he  surface  of the  moon from ear th  [5 l ]  and should provide a good 
basis  f o r  comparison. Since op t i ca l  s ignals  have already keen detected 
using one type of source (a l a s e r )  one method of comparison would be 
t o  determine what other types of sources could a l s o  have been used i n  
t h i s  experiment. 

The op t i ca l  s i gna l  which t he  Surveyor 7 spacecraft  t e lev i s ion  camera 
detected had a s t e l l a r  magnit de of about -3 1511 which gives an equivalent 
illumination l eve l  of 3 X lowk! lm/ft2 ( f C )  [3, p. 1071. I n  t he  
experiment i n  which Surveyor detected the  op t i ca l  s ignals ,  a t o t a l  of 
six lacers  were aimed a t  t h e  moon and two were detected. Thc 
dfitcctcd :;i[;naS:; were located within the moon' :; :;hadow, while tho 
other.:: were located i n  the  s u n l i t  port ion ol' the  earth.  The 
i l lumination l e v e l  on the  moon f o r  the  port ion ol' t he  i-mage correo- 
ponding t o  thg region ol' the  ea r th  i n  the  moon's shadow was between 
10-10 and 10' 1m/ft2. The illuminatj.on l eve l  on t he  moon resu l t ing  
from the ear th-ref lected sunlight  ( "earthshine") has been estimated 
a t  between 1.2 and 1.7 lm/ft2 Lj7, 521. Thus t h e  signal-to-noise r a t i o  
f o r  t h e  received images of the  l a se r s  located on the  ea r th  but i n  t h e  
moon !s shadow was much grea te r  than one. While t h e  signal-to-noise r a t i o  
f o r  the  l a se r s  located in  t he  s u n l i t  port ion of t h e  ea r th  w a s  severa l  
orders of magnitude l e s s  than one. It should be noted t ha t  no op t i ca l  
f i l t e r s  were used t o  spec i f i c a l l y  s e i ec t  the  l ase r  s ignals  s ince  the  
camera was not designed f o r  t h i s  purpose. 

I n  order t o  compare t h e  various l i g h t  sources, they w i l l  be 
evaluated on the  bas i s  of t h e  i l lumination resu l t ing  on t h e  moon when 
t h e  t o t a l  l i gh t  output i s  concentrated i n to  a beamwidth of 10 mrad 
(0.5'). A beamwidth of t h i s  s i z e  was considered a s  reasonably easy t o  
obtain by means of parabolic r e f l ec to r s  or  Fresnel  lenses.  While beam- 
widths as small as 1 mrad have been reported [38,  pe 2131, it w a s  not 
considered p r ac t i c a l  t o  assume such a small beamwidth s ince  t h i s  could 
only be accomplished f o r  very small l i g h t  sourccs which could be accurate ly  
positioned at the  focus of the  lens or re f lec to r .  I f  t h e  l i g h t  output 
i s  uniformly d i s t r ibu ted  over the  beamwidth and t h e  t o t a l  luminous f l u x  
i 8  concentrated i n to  the  beam, then by (3.6-1) t h e  in tens i ty  of the 
source is 



whcrc B2 = nol id  angle  of  br?ani. 

1"1 '  I n:>.L(!c~cl ol' ,L31o t o t r ~ l .  1.urnLnouc I'lux, I t ' ,  t hu  I L(-;-:II.L ouL[)uL L:I r:pr:cll'lod 
ui: %he In tor la i ty  I 'ur  u g iven  beamwidth, t hen  under t h c  aatne aosumpt ions 
used previous ly ,  t h e  i n t e n s i t y  and beamwidth ( i n  t h e  sense o f  t h e  s o l i d  
a n g l e )  a r e  r e l a t e d  by 

I n  o t h e r  words, t h e  t o t a l  luminous f l u x  i s  cons t an t  and t h e  beamwidth 
and i n t e n s i t y  a r e  i nve r se ly  propor t iona l ,  i . e . ,  t h e i r  product is a 
cons tan t  . 

The above two formulas can be used t o  c a l c u l a t e  t h e  i n t e n s i t y  
of t h e  beam which would be produced from a s p e c i f i e d  source when t h e  
d e s i r e d  beamwidth i s  known, The plane ang le  beamwidth is r e l a t e d  t o  
t h e  s o l i d  ang le  of t h e  beam by 

where B2 = s o l i d  angle  of t h e  cone formed by r o t a t i n g  a plane ang le  8 

0 = plane ang le  i n  r ad i ans ,  

When 8 is small, (3.6-4) reduces t o  

The i l l umina t ion  l e v e l  a t  a d i s t a n c e  d from a p o i n t  source  of i n t e n s i t y  
I i s  

where E = i. l l uni nancc j.n :lm/ L'bl' 

I = luminous i n t e n s i t y  i n  cd 

d = d i s t a n c e  i n  M;. 

Ucing t h e  d i s t a n c e  t o  t h e  moon a s  d,  (3.6-6) reduces t o  

Using t h e  above s i m p l i f i c a t i o n s  and assuming a beamwidth of 10 mrad, t h e  
i l l u m i n a t i o n  l e v e l  produced by a source w i t h  a luminous f l u x  output  of 
F l m  i s  



where E = i l lumination l e v e l  on t h e  surface of t h e  moon i n  lm/ft 
2 

F = luminous f lux  output i n  l m .  

I n  t he  case where t h e  l i g h t  output of t h e  source i s  specif ied in  terms 
of t he  i n t ens i t y  over some given beamwidth, the  i l lumination l e v e l  i s  

where ba = so l i d  angle of t h e  o r ig ina l  beam i n  sr 

I = average i n t ens i t y  of t h e  o r ig ina l  beam i n  cd. 

U ~ i n g  (3.6-8) or (3.6-9) with t h e  data  presented previously on high 
power l i g h t  sources gives various values fo r  t he  i l lumination l eve l  
which w e  presented i n  Table 11 along with other pert inent data. 

Table . 11 

ILLUHLNATION LEVEE OF SIGNALS RECEIVE3 ON THE MOON 
FROM VARIOUS HIGH POWER LIGIfC SOURCES 

Light Output I l lumination Level 
Source ( s igna l  power) 

lm/ft2 * 

Incandescent 

Xenon Vapor 

Carbon Arc 

Carbon Arc 

* Assuming 10 mrad beamwidth. 

* 0 . 3 5 ~  < < 0.77~1. 



Comparing t h e  I l l umina t ion  Levels given i n  Ta l e  11 w i t h  t h e  
i l l u m i n a t i o n  l e v e l  of t h e  s i g n a l  de t ec t ed  (3 X 0 1m/ft2) shows t h a t  
t h e r e  a r e  var ious  h igh  power l i g h t  sources  which could be  d e t e c t e d  on 
t h e  moon, It i s  q u i t e  s i g n i f i c a n t  t o  note  t h a t  t h e  l a s e r s  which were 
d e t e c t e d  produced a t o t a l  output  of between 2 and 4 w a t t s  bu t ,  of 
course,  at a much narrower beamwidth. I n  a11 cases  t h e  rece ived  s i g n a l  
i n t e n s i t y  is  over f i v e  o rde r s  of magnitude l e s s  t han  t h e  i n t e n s i t y  of 
t h e  r e f l e c t e d  s u n l i g h t ,  t h u s  i n d i c a t i n g  a v e r y  srnall of d e t e c t i o n  
f o r  sources  Ln t h e  s u n l i t  po r t i on  of t h e  e a r t h .  Even case  of t h e  
sodj  l lm  vapor lamp t h e  use of a f i l t e r  would no t  
no i se  r a t i o  s u f f i c i e n t l y  t o  allow' d e t e c t i o n  s i n c e  t h e  few percent  of 
background energy t h a t  would s t i l l  be  p re sen t  would b e  t o o  much, 

The inve r se  square law can be used t o  r e l a t e  t h e  c a l c u l a t i o n s  j u s t  
made t o  t h e  case  of a synchronous s a t e l l i t e .  The d i s t a n c e  to t h e  
synchronous s a t e l l i t e  is such t h a t  improvement of two o rde r s  of 
magnitude can be expected i n  t h e  s i g n a l  s t r e n g t h ,  bu t  t h i s  a l s o  a p p l i e s  
t o  t h e  background no i se .  Hence, t h e  conclusions made on t h e  b a s i s  of 
t h e  s igna l - to -no i se  r a t i o  a t  t h e  mcon's s u r f a c e  apply  e q u a l l y  as w e l l  
t o  t he  synchronous s a t e l l i t e .  I n  t h e  case  of pulsed l i g h t  sources ,  
t h e  d u r a t i o n  of the  l i g h t  pu lse  must be  considered.  However, i f  it i s  
assumed t h a t  t h e  camera s h u t t e r  and source  a r e  synchronized, then  only 
t h e  l i g h t  output must be considered.  Under t h i s  asswnption t h e  
i l l umina t ion  l e v e l  f o r  t h e  pulsed l i g h t  sources  (e.g. ,  Table 6 )  is  
s l i g h t l y  h ighe r  t h a n  those  of Table 11, b u t  not  s u f f i c i e n t l y  d i f f e r e n t  
t o  change t h e  r e s u l t s .  

The fol lowing conclus ions  can be drawn from t h e  r e s u l t s  of t h i s  
s ec t ion .  While t h e r e  a r e  a number of h igh  power l i g h t  sources  t h a t  could 
be used t o  provide a d e t e c t a b l e  s i g n a l  i n  t h e  absence of r e f l e c t e d  s u n l i g h t ,  
none provides  a s u f f i c i e n t  s igna l - to -no i se  r a t i o  f o r  d e t e c t i o n  a g a i n s t  
a s u n l i t  background. The l a s e r  r ep re sen t s  t h e  only l i g h t  source  which 
has  a s u f f i c i e n t l y  narrow s p e c t r a l  output t o  permit f i l t e r i n g  out a 
s i g n i f i c a n t  po r t ion  of t h e  background no i se  which c o n s i s t s  of r e f l e c t e d  
s u n l i g h t ,  By making use of i n t e r f e r e n c e  f i l t e r s  such as t h o s e  descr ibed  
i n  Table 10, it should be poss ib l e  t o  e l imina te  almost a l l  of t h e  
r e f l e c t e d  sun l igh t .  I n  t h e  case  of l i g h t  i n  t h e  c e n t e r  of  t h e  v i s i b l e  
reg ion  (h O , 5 5 ~ )  and a f i l t e r  bandwidth of 0 . 0 0 1 ~  t h e  background 
energy present  a f t e r  t h e  f i l t e r  would be on t h e  order  of 0.1% of' t h e  
i nc iden t  energy assuming a 6 0 0 0 ~ ~  b l ack  body s p e c t r a l  d i s t r i b u t i o n .  
A 1 1  o p t i c a l  energy sources  except  t h e  l a s e r  can t h e r e f o r e  be r e j e c t e d  
on t h e  grounds of i n s u f f i c i e n t  s i g n a l  power i n  a s u f f i c i e n t l y  narrow 
s n e c t r a l  reg ion  t o  overcome t h e  background noise  p re sen t .  An exac t  
de te rmina t ion  o f  t h e  s igna l - to -no i se  r a t i o  requi red  w i l l  determine i f  
l a s e r s  w i t h  s u f f i c i e n t  power a r e  a v a i l a b l e .  

3.7 Acquis i t ion ,  Tracking and System Configurat ion 

The resul- ts  presented i n  t h e  previous s e c t i o n  demonstrate t h a t  
o p t i c a l  s i g n a l s  from carth-based u s e r s  can be d e t  ccted at  synchronous 
a l t i t u d e  under c e r t a i n  condi ' t ions,  The mere f a c t  t h a t  o p t i c a l  s i g n a l s  
could be de t ec t ed  does not imply t h a t  a n  o p t i c a l  naviga t ion  system is  
f e a s i b l e ,  however. To demonstrate t h e  L 'eas ib i l i  t y  of a n  o p t i c a l  
naviga t ion  system, it i s  necessary  t o  show %ha% a system can be  



cons t ruc ted  which w i l l  be  a b l e  t o  d e t e c t  u se r s  under s u f f i c i e n t l y  g e n e r a l  
condi t ions  t o  permit naviga t ion .  I n  o t h e r  words, t h e  condi t ions  
requi red  f o r  d e t e c t i o n  w i l l  impose c e r t a i n  r e s t r i c t i o n s  on when %he 
u s e r ' s  o p t i c a l  s i g n a l  can be de t ec t ed ,  and t h e s e  r e s t r i c t i o n s  i n  t u r n  
w i l l  determine i f  it i s  f e a s i b l e  t o  use o p t i c a l  methods f o r  naviga t ion .  

3.7.1 General 'System Considerat ions 

The system conf igu ra t ion  chosen is  a t e l e v i s i o n  camera which w i l l  
d e t e c t  o p t i c a l  s i g n a l s  t r ansmi t t ed  by t h e  use r s .  The output  from t h e  
camera w i l l  be fed  t o  a  th reshold  d e t e c t o r  whhch w i l l  perform b ina ry  
d e t e c t i o n  on each r e so lvab le  image element. For such a system t o  
perform r e l i a b l y ,  t he  rece ived  s i g n a l  must be s u f f i c i e n t l y  s t rong  t o  
ensure  a high s igna l - to-noise  r a t i o  s o  t h a t  t h e  d e t e c t i o n  of t h e  o p t i c a l  
s i g n a l  can be perf  orrned under very  g e n e r a l  cond i t i ons .  The poss ib l e  
u se r  r e s t r i c t i o n s  which w i l l  b e  imposed by t h e  condi t ions  requi red  f o r  
d e t e c t i o n  of t h e  s i g n a l  w i l l  be i l l u s t r a t e d  by cons ider ing  t h e  example 
of t h e  previous cec t ion .  

The d e t e c t i o n  of o p t i c a l  s i g n a l s  descr ibed  i n  Sec t ion  3.6.3 was 
accomplished under t he  fo l lowing  condi t ions :  

1 )  t h e  s i g n a l  sources  which were d e t e c t e d  would have had t o  
come from u s e r s  opera t ing  a t  n igh t  i n  o rde r  t o  reduce t h e  
background energy; 

2) very  accu ra t e  aiming of t h e  l a s e r s  used t o  genera te  t h e  
o p t i c a l  s i g n a l s  was necessary;  

3 )  t h e  r e s o l u t i o n  a v a i l a b l e  dur ing  t h e  experiment was only 
200 TV l i n e s  [51]. 

While t h e  performance of t h e  Surveyor 7 t e l e v i s i o n  system w a s  never meant 
t o  be even remotely connected wi th  a n  o p t i c a l  naviga t ion  system, t h e  
condi t ions  under which it operated have very  d e r i n i t e  implications on 
t h e  ope ra t ion  of ouch a naviga t ion  system. Condit ions I and 3 do no t  
p re sen t  s e r i o u s  r e s t r i c t i o n s ,  s i n c e  it should be  poss ib l e  t o  use h ighe r  
power sources  and f i l t e r s  t o  overcome t h e  background noise,  and t h e  
development of h igh  r e s o l u t i o n  camera tubes  which can opera te  i n  space 
should be  expected as a r e s u l t  of t h e  e a r t h  r e sou rces  program, While 
condi t ions  1 and 3 a r e  present  because of t he  t y p e  of equipment involved,  
cond i t i on  2 has f u r t h e r  impl ica t ions  r ega rd l e s s  of what t y p e  of equipment 
is used. 

I n  t h e  experiment i n  which Surveyor 7 d e t e c t e d  l a s e r  s i g n a l s  t r a n s -  
mit ted from t h e  e a r t h ,  it was found t h a t  a po in t ing  accuracy  of 2-4 seconds 
of a r c  was requi red  [51]. I n  terms of' t h e  p o s i t i o n  e r r o r  from synchronous 
al"ctude,  t h i s  would mean a maximum a l lowable  p o s i t i o n  e r r o r  of O.'( km 
w i t h  no p rov i s ion  f o r  i naccu ra t e  aiming of t h e  l a s e r  beam. I f  a  
p o s i t i o n  accuracy such as t h a t  juo t  ca l cu la t ed  i s  r equ i r ed  i n  o rde r  t o  
aim a l a s e r  s o  t h a t  t h e  beam can be de t ec t ed ,  t hen  such a system could 
not  be used f o r  n a v i g a t i o n a l  purposes. A system which r e q u i r e s  a n  
a c c u r a t e  knowledge of t h e  p o s i t i o n  of t h e  user  i n  order  t o  opera te  
cannot be expected t o  serve  as t h e  b a s i s  of a nav iga t ion  system. I n  



order  t o  ovcrconle t h i s  r e s t r i c t i o n ,  it w i l l  be necessary  t o  e i t h e r  
i nc rease  the  beam divergence o r  have t h e  source  scan  t h e  region where 
t h e  s a t e l l i t e  i s  assumed t o  be loca t ed ,  Assuming t h e  u s e r  has a n  
a p r i o r i  knowledge of hFs approximate pos i t i on ,  perhaps from a much 
l e s s  a c c u r a t e  nav iga t ion  system, t h i s  knowledge can  then  be  used t o  
p r e d i c t  t h e  approximate reg ion  of t h e  sky where t h e  s a t e l l i t e  w i l l  be  
l oca t ed .  

The f e a s i b i l i t y  of a n  o p t i c a l  naviga t ion  system w i l l  depend on t h e  
r e l a t i o n s h i p s  among source  power, beam divergence  and p o s i t i o n  knowledge 
w i t h  t h e  r e s t r i c t i o n  t h a t  t h e  o p t i c a l  energy rece ived  must be s u f f i c i e n t  
t o  provide t h e  r e s o l u t i o n  requi red .  I n  order  t o  be f e a s i b l e  t h e  o p t i c a l  
system proposed must be  a b l e  t o  t o l e r a t e  a s u f f i c i e n t l y  l a rge  p o s i t i o n  
e r r o r  wi thout  r e q u i r i n g  a source  power g r e a t l y  i n  excess  of t he  c u r r e n t l y  
avai1abl.e l a s e r  power. A reasonable e s t ima te  f o r  t h e  rnaximum pos it ion 
e r r o r  which should be t o l e r a t e d  is  t h e  d i s t a n c e  betwecn two success ive  
p o s i t i o n  f i x e s  and depending on t h e  u s e r ' s  v e l o c i t y  and time between 
p o s i t i o n  f i x e s ,  t he  p o s i t i o n  e r r o r  could be on t h e  o rde r  of s e v e r a l  
hundred lcilomcters. It i s  u n l i k e l y  such a l a r g e  p o s i t i o n  e r r o r  could 
be t o l e r a t e d  by a n  o p t i c a l  naviga t ion  system, cons ider ing  t h e  sou rce  
pa re r  t h a t  w i l l  probably be a v a i l a b l e .  Even t h e  s imp les t  naviga t ion  
equipment, however, should provide a more a c c u r a t e  e s t ima te  than t h a t  
which could be  obtained by dead-reckoning, which is what a p o s i t i o n  
e r r o r  of s e v e r a l  hundred k i lometers  might r e p r e s e n t .  A reasonable va lue  
f o r  t h e  source power r equ i r ed  should be l e s s  t han  100 W i f  t h e  develop-  
ment of t h e  source i s  t o  be expected i n  t h e  nea r  f u t u r e .  

3.7.2 Search Techniques - 

I n  o rde r  t o  determine t h e  s e c t i o n  of t h e  sky  i n  which the  s a t e l l i t e  
i s  loca ted ,  it i s  necessary  t o  know t h e  approximate l o c a t i o n  of t h e  use r .  
The more accu ra t e  t h e  es t imated  use r  p o s i t i o n  is ,  t h e  smal le r  w i l l  b e  
t h e  s e c t i o n  of t h e  sky  i n  which t h e  s a t e l l i t e  is  loca t ed .  For small 
p o s i t i o n  e r r o r s  it rnay be  poss ib l e  t o  increase  t h e  beam divergence t o  
compensate f o r  t h e  l a c k  of know Ledge of t h e  u s e r ' s  exac t  l oca t ion .  
Large p o s i t i o n  e r r o r s ,  however, w i l l  r e q u i r e  t h a t  t h e  use r  scan  the  
reg ion  of" the  sky i n  which it i s  expected t h a t  t h e  satellite w i l l  bc 
loca ted .  I n  e i t h e r  ca se  t h e  u n c e r t a i n t y  i n  t h e  p o s i t i o n  of t h e  use r  
can be d i r e c t l y  r e h t e d  t o  t h e  s i z e  of t h e  r eg ion  of t h e  sky which must 
be searched,  and hence t o  t h e  beam divergence r equ i r ed  t o  s ea rch  t h a t  
reg ion .  

The u n c e r t a i n t y  i n  t h e  u s e r s s  p o s i t i o n  w i l l  be  expressed as a 
c i r c l e  w i t h  some given g r e a t  c i r c l e  d i s t a n c e  as t h e  diameter  ( r eg ion  of 
poss ib l e  l o c a t i o n )  and t h e  c e n t e r  of which i s  t h e  es t imated  pos i t i on .  
The est imated p o s i t i o n  w i l l  determine t h e  expected l o c a t i o n  of t h e  
s a t e l l i t e ,  and t h e  c r r o r  i n  t h e  est imated p o s i t i o n  w i l l  determine t h e  
beam divergence requi red  E O  t h a t  no matter  what t h e  t r u e  p o s i t i o n  of t h e  
use r ,  t h e  s a t e l l i t e  w i l l  i n t e r c e p t  t h e  t r ansmi t t ed  beam. The geometry 
of t h e  s i t u a t i o n  i s  i l l u s t r a t e d  i n  F ig .  26, where the  expected p o s i t i o n  
of t h e  u s e r  i s  at  t h e  s u b s a t e l l i t c  p o i n t ,  As w i l l  be  shown l a t e r  t h e  
d e r i v a t i o n  of t h e  beam divergence i n  t h i s  s p e c i a l i z e d  s i t u a t i o n  r ep re sen t s  
no loso i n  g e n e r a l i t y .  The s i t u a t i o n  i l l u s t r a t e d  i n  P ig .  26 i s  t h e  
fol lowing.  The user  has est imated h i s  p o s i t i o n  and found t h a t  it is a t  



FIGURE 26 G E O M E n l C A L  RELATIONSHIP BETWEEN 
UXER P3SCliON UNCERTA!b!TY AND 
BEAM DIVERGENCE. 
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t h e  s u ' i s a t e l l i t e  po in t  and t h e  accuracy  of t h i s  e s t ima te  is such t h a t  
w i t h  a very  small probai3i l i ty  of e r r o r ,  t h e  user  i s  w i t h i n  a c i r c l e  w i t h  
g r e a t  c i r c l e  d i s t a n c e  GCD as t h e  d iameter ,  Since t h e  o p t i c a l  s i g n a l  
t r ansmi t t ed  must b e  rece ived  by t h e  s a t e l l i t e ,  t h e  user  p o s i t i o n  
corresponding t o  t h e  maximum poss ib l e  e r r o r  w i l l  determine t h e  beam 
divergence.  The a n g l e  8 corresponds t o  t h e  beam divergence r equ i r ed  
i n  t h e  worst case  and is  i l l u s t r a t e d  f o r  two pos i t i ons  exac t ly  oppos i te  
one another .  

Geometrically t h e  s i t u a t i o n  descr ibed  i n  F ig .  26 is e x a c t l y  t h e  
same a s  t h a t  descr ibed  i n  Fig.  12 except t h a t  i n  t h e  present  s i t u a t i o n  
8 and GCD have exac t ly  h a l f  t h e  va lue  i n F ig .  12. Using thi3 prelrious 
r e s u l t  (2.7-4) &nd no t ing  t h e  r e l a t i o n s h i p  among t h e  v a r i a b l e s :  

where 8 = beam divergence requi red  

dA = GCD = diameter  of t h e  c i r c l e  of u n c e r t a i n t y  i n  t h e  
p o s i t i o n  expressed as a g r e a t  c i r c l e  d i s t a n c e  

r = r ad ius  of t h e  e a r t h  e 
r = synchronous s a t e l l i t e  a l t i t u d e .  
s 

A beam divergence a n g l e )  of 8 r ad ians  y i e l d s  a beam of s o l i d  
ang le  (1 : 

82\ 
= 41-t s i n  ('=c 

which reduces t o  t h e  fol lowing f o r  very small ang le s :  

Using (3.7-1) and (3.7-2) t h e  reg ion  of t h e  sky where t h e  s a t e l l i t e  i s  
loca t ed  can be expressed i n  terms of a s o l i d  angle  which i s  a f u n a t i o n  
of t h e  e r r o r  i n  t he  est imated pos i t i on .  



where L-2 = s o l i d  ang le  of the  por t ion  of t h e  sky i n  which t h e  
navigat ion  s a t e l l i t e  is  located 

dA = diameter  of region  of pos i t ion  uncer ta in ty .  

I n  t h e  case of a  very srrall e r r o r  i n  t h e  pos i t ion  es t imate  (3.7-4) 
reduces t o  

where dA is  expressed i n  ki lometers .  

The r e s u l t s  of (3.7-1) and (3.7-4) have been p l o t t e d  i n  Fig. 27  
f o r  a l l  poss ib le  values of t h e  pos i t ion  unce r t a in ty  GCD or dA. The 
r e s u l t s  presented i n  Pig .  27 show t h a t  t h e  s i z e  of t h e  s o l i d  angle  t o  
be searched i s  d i r e c t l y  p ropor t iona l  t o  t h e  square of t h e  pos i t ion  e r r o r  
except f o r  extremely l a rge  values.  Considering the  r e l a t i v e  magnitudes 
of re and rs i n  (3.7-4), it is  seen t h a t  f o r  a l l  p r a c t i c a l  purposes 
(3.7-6) can be used f o r  a l l  ca l cu la t ions  and not  j u s t  those i n  which 
dA is small .  Note t h a t  the  maximum dA i s  18106 kM which corresponds t o  
t h e  case where t h e  whole sky must be searched, i. e. ,  t h e  s o l i d  angle  t o  
be searched is  2 7 t  sr. 

I f  t h e  est imated pos i t ion  of t h e  user  i s  not  a t  the  s u b s a t e l l i t e  
point  t h e n  t h e  s i z e  of t h e  region  of poss ib le  l o c a t i o n  must be such 
t h a t  it is  not  poss ib le  that t h e  s a t e l l i t e  is below t h e  user  e s  horizon. 
I n  terms of t h e  d i s t ances  involved the  r e s t r i c t i o n  necessary s o  t h a t  
t h e  s a t e l l i t e  is  never below t h e  u s e r ' s  horizon f o r  any p o s i t i o n  i n  t h e  
region of poss ib le  loca t  ion i s  : 

where d = g r e a t  c i r c l e  d i s t a n c e  from t h e  s u b s a t e l l i t e  point  t o  t h e  
estimated p o s i t i o n  of the  user .  

Since t h e  e r r o r s  a s soc ia t ed  wi th  a n  angular  measurement navigat ion  system 
become worse a t  l ow  e l eva t ion  angles  t h e  inequa l i ty  (3.7-7) should be  







mt~dr? r;tronlr,crr by multipLyiny t h e  right-hund s i d c  by some s a f e t y  f a c t o r ,  
ouy 0.85, f o r  el.cvuti.on ungles below about 150. The exact form of t h e  
restriction (3.7-'1) and t h e  value of the  s a f e t y  f a c t o r  would depend on 
t h e  performance of t h e  o p t i c a l  system at t h e  edges of the  image. The 
f a c t o r  K re /2  corresponds t o  a f ield-of-view of about 17' and the  a c t u a l  
value of t h i s  f a c t o r  would depend on t h e  f ield-of-view of t h e  a c t u a l  
o p t i c a l  system used. 

The r e s u l t s  i n  Fig .  27 represent  t h e  worst poss ib le  r e s u l t s  f o r  a  
given g rea t - c i r c l e -d i s t ance  s ince  the  angular  r e s o l u t i o n  is  b e s t  a t  the 
s u b s a t e l l i t e  poin t .  The beam divergence required becomes l e s s  a s  t h e  
est imated pos i t ion  moves away from t h e  s u b s a t e l l i t e  point  s ince  t h e  
e f f e c t  of  t h e  poss ib le  pos i t ion  v a r i a t i o n  r ep resen t s  l e s s  of a n  angular  
v a r i a t i o n  than a s i m i l a r  pos i t ion  e r r o r  a t  t h e  s u b s a t e l l i t e  point .  To 
a f i r s t  approximation t h e  s i z e  of t h e  s o l i d  ang le  t o  be searched i s  
inve r se ly  propor t ional  t o  t h c  square of t h e  GDOP f a c t o r  p ~ o v i d e d  t h e  
s i z e  of t h e  region  of  uncer ta in ty  or  p o s i t i o n  loca t ion  is small enough 
so  t h a t  the  e l eva t ion  angle  can be assumed t o  be cons tant  i n  t h i s  region. 
Under t h e s e  assumptions the  r e s u l t s  i n  Fig.  27 can be modified t o  
account f o r  estimated pos i t ions  other  t h a n  t h e  s u b s a t e l l i t e  poin t  by 
d iv id ing  t h e  r e s u l t s  of Fig. 27 by t h e  GDOP f a c t o r  02 

where n ( e  ) = s o l i d  ang le  t o  be searched as a func t ion  of the  e l eva t ion  
ang le  

F1 = s o l i d  ang le  from Fig. 27 corresponding t o  the  s i z e  of t h e  
region  of uncer ta in ty  

GDOP = geometrical-di lut ion-of  -prec is ion  corresponding t o  t h e  
e l eva t ion  ang le  e  a t  t h e  est imated user  pos i t ion .  

From Appendix A, ( ~ . 6 )  can be  used t o  evalua te  t h e  GDOP f a c t o r  g i v i n g  

The e l eva t ion  angle  and t h e  d i s t ance  t o  t h e  user from the  s a t e l l i t e ,  
r l ( e ) )  can both  be evaluated i n  terms of t h e  g r e a t  c i r c l e  d i s t ance  
from t h e  s u b s a t e l l i t e  point  t o  the  estimated user  pos i t ion  using (2.7-3)  
and (2,7-4) g iv ing  t h e  approximation (3. '7-LO), Equation (3.'[-10) is 
v a l i d  only i f  t h e  e l eva t ion  angle is  approximately constant  over t h e  
r eg ion  of poss ib le  use r  pos i t ion  and t h i s  r e s t r i c t i o n  becomes weaker a s  
t h e  estimated pos i t ion  approaches t h e  s u b s a t e l l i t e  point  where i% is 
unnecessary. 





(Jning t h c  f;amc upproxFn&tionn ur; thocc uced t o  o b t a i n  (3.7-5)  t h e  
vuluc oi' (3.'(-10) can be r;lpproxlrnuted by 

which in  ~ u f f i c i e n t l y  a c c u r a t e  f o r  most purposes except i n  reg ions  of  
ma l l  e1c:vation un[r,lcc, i , e .  15' and below, .and l a r g e  values of dA. 

'J1he c i z e  oL' t h e  reg ion  oL' poc i t i on  u n c e r t a i n t y  is not t h e  only 
f a c t o r  which determines t h e  s i z e  of t h e  reg ion  t o  be searched. I n  
a d d i t i o n  t o  knowing h i s  pos i t i on ,  t h e  u s e r  must a l s o  have some o r i e n t a t i o n  
r e fe rence  i n  order  t o  know i n  which d i r e c t i o n  t o  a i m  t h e  l a s e r .  The 
u s e r ' s  heading must be known and h i s  h o r i z o n t a l  r e f e rence  must a l s o  be 
known and any e r r o r  i n  t h e s e  q u a n t i t i e s  w i l l  cause a corresponding e r r o r  
i n  t h e  est imated p o s i t i o n  of t h e  s a t e l l i t e .  Such a n  e r r o r  is not 
accounted f o r  i n  t h e  de te rmina t ion  of t h e  s i z e  of t h e  reg ion  t o  be 
searched from t h e  p o s i t i o n  e r r o r .  The s i z e  of t h e  r eg ion  t o  be searched 
w i l l  have t o  be increased  t o  a l low f o r  t h e  p o s s i b i l i t y  of a n  o r i e n t a t i o n  
e r r o r .  

The u s e r ' s  o r i e n t a t i o n  w i l l  b e  determined from h i s  compass 
heading and a h o r i z o n t a l  r e f e rence  which w i l l  probably be t h e  p o s i t i o n  
of t h e  horizon. If each of t h e s e  d i r e c t i o n s  has an  a s s o c i a t e d  angu la r  
e r r o r  and t h e  d i r e c t i o n s  a r e  assumed t o  be or thogonal ,  then  t h e  t r u e  
p o s i t i o n  of any poin t  i n  t h e  sky w i l l  be w i t h i n  a pro jec ted  r ec t angu la r  
reg ion .  The beam divergence w i l l  be  increased s o  tkt  no mat te r  where 
t h e  t r u e  l o c a t i o n  of a po in t  i s  w i th in  t h e  pro jec ted  rectangle, it w i l l  
s t i l l  b e  w i t h i n  t h e  r eg ion  scanned by t h e  user .  Using t h e  independence 
assumption, t h e  maximum angular  p o s i t i o n  e r r o r  which can occur  w i l l  be 
t h e  hypakenuae of t h e  s i g h t  s p h e r i c a l  t r i a n g l e  w i t h  s i d e s  AQc and PQH. If 
t h e  beam divergence i s  t h e n  increased by t h e  maximum angular  r e f e rence  
e r r o r  then  t h e  system w i l l  opera te  r e g a r d l e s s  of t h e  e r r o r .  The t o t a l  
beam divergence,  t a k i n g  i n t o  account t h e  angu la r  r e f e rence  e r r o r ,  i s :  



where BT = t o t a l  beam divergence required 

= 0 = beam divergence required a s  a r e s u l t  of posit ion 
c r ro r  (from gig. 2.7) 

'RE bean1 divergence required a s  a r e s u l t  of reference e r ro r s  

ABC = maximum angular e r ro r  i n  compass heading 

ABH = m a x i m u m  angular e r r o r  i n  hor izontal  reference. 

The t o t a l  beam divergence, 8 must be used when determining t h e  s ize  
of t h e  region t o  be searched?(see Section 3.903). 

Now t h a t  t he  re la t ionsh ip  between t h e  posi t ion uncertainty, t h e  
reference e r r o r  and t he  s i z e  of t h e  region t o  be searched has been 
found, t he  method used t o  search t he  region must be considered. A t  
t h e  beginning of t h i s  sect ion two possible search methods were given, 
One method w a s  simply t o  increase t he  beam divergence using a var iab le  
focus lens f o r  example. The other was t o  ac tua l ly  sweep or scan t h e  
region t o  be searched i n  some predetermined manner, The point a t  
which t h e  switch should be made from an increasing beam divergence 
system t o  a scanning system w i l l  depend on t he  source power avai lable .  
It would be preferable t o  simply increase t h e  beam divergence s ince  t h i s  
would require  a simpler mechanical system than a scanning system, but  
a s  t he  beam divergence i s  increased t h e  power required t o  y ie ld  a 
detectable  s i g n a l  a l s o  increases,  I n  order t o  compare t he  two methods 
the  t o t a l  received s igna l  energy must be found s ince  t h e  s i gna l  
duration w i l l  not be the  same f o r  the  two cases. 

The received s igna l  energy i n  the  case where t h e  beam divergence 
i s  varied can be calculated from the  energy d i s t r i bu t i on  i n  t h e  beam 
and the  shu t t e r  speed, To calcula te  t h e  received energy i n  t h e  case 
of a scanning beam, t he  energy d i s t r i bu t i on  i n  t h e  beam must be 
knswn as a function of t h e  time i n  which t h e  beam is incident on t h e  
s a t e l l i t e .  The method i n  which t h e  beam i s  scanned over the  desi red 
region w i l l  determine t h e  energy d i s t r i bu t i on  of the  received s ignal .  

Since t h e  region t o  be scanned i s  conical  a s p i r a l  method af 
scanning w i l l  be used. This method i s  consistent  with t h e  shape of 
t h e  beam and t h e  shape of t he  region t o  be searched, Figures 28 and 
29 i l l u s t r a t e  t h e  type of search method which w i l l  be used, The 
s i t u a t i o n  described i n  these  f igures  is  t h e  following. The user has 
estimated h i s  posi t ion and the  accuracy of h i s  posi t ion and found 
t h a t  the  region t o  be searched corresponds t o  a t o t a l  Seam divergence 
of eT which includes any possible reference errDrs. The region must 
be searched with a source having a beam of Qb. The search pat tern  t o  
be used is a s p i r a l  with t h e  center of t h e  s p i r a l  corresponding t o  the  
estimated s a t e l l i t e  posi t ion determined from t h e  user 's  estimated 
posi t ion,  The scanning motion is  produced by a ro ta t ing  lens system 
which ro t a t e s  at a r a t e  u(#) and Ls aimed i n  a d i rec t ion  # which is  the  
deviation from the  expected posi t ion of t h e  s a t e l l i t e .  If t he  
probabi l i ty  d i s t r i bu t i on  of the  u se r s s  posit ion within the  region of 
uncertainty were known then t he  scanning motion could be modified t o  
scan t h e  most probable region. Since it i s  assumed t h a t  t h e  user can 
be any-where within the  region of uncertainty, a uniform probabi l i ty  



FIGURE 28 SCANNING SYSTEM CONFIGURATION 

FIGURE 29 SEARCH PATTERN 



d i s t r i bu t i on  i s  implied. The source beam must therefore  scan t h e  region 
t o  be searched i n  such a way t h a t  t h e  r o t a t  ion r a t e  u ( @ )  decreases a s  PI 
increases s o  a s  t o  i l luminate each point i n  t h e  region eT t o  be searched 
equally. An analysis  of t h e  scanning motion w i l l  be made t o  determine 
how t h e  received s igna l  energy var ies  with t h e  scanning motion, 

From Fig. 29 it can be seen t h a t  t he  t o t a l  number of revolutions 
of t he  source bearn required t o  cover t he  desired a rea  i s  

where I$, = number of revoluLFons required 

8 = t o t a l  divergence of t o t a l  region t o  be searched T 
eb = beam divergence. 

If % is large, then t h e  scanning pat tern  i l l u s t r a t e d  i n  Fig. 29 can be 
approximated by a t r u e  s p i r a l ,  The r e su l t s  which follow w i l l  then be 
appl icable . to  a t rue  s p r i a l  even though they a r e  derived using Fig. 29, 
If the  source beam i s  revolving a t  a rate e ( @ )  then t h e  t angent ia l  
veloci ty  of t h e  point P, the  center of the  search beam, is 

v = e ( @ ) r  s i n  

ussurr~ing that t h e  dictance t o  the a a t c l l i t c  docs not change us a 
funct ion of $. ThLa &saumption i c  t r ue  if the  user i c  s ta t ionary  and 
t h e  estimated user posi t ion i s  a t  the  subsa t e l l i t  itc point. If the  
received s igna l  energy i s  t o  be constant a t  a l l  points i n  t h e  region 
t o  be searched, then t h e  ve loc i ty  of point P must be constant and the  
r a t e  of rota t ion,  a($), must be 

In  order f o r  t he  point P t o  move according t o  the search pa t te rn  
i l l u s t r a t e d  i n  Fig. 29, t he  deviation angle, 6, must t ake  on a l l  odd 
multiples of eb/2. T'ne path length over which P moves i n  one revolution 
i s  

A ( $ )  = 2fir s i n  $ (367-17) 



and t h e  t o t a l  path length t rave l led  while scanning t h e  e n t i r e  region i s  

= 1 2nr s i n  pi 

L n- 
2eb ( ( 2 n - l ) ~ ~ I  

= 2nr 1 s i n  , 
2 f 

where % = t o t a l  path length 

r = distance t o  s a t e l l i t e  (see (2.7-3)) 

eT = t o t a l  divergence of region t o  be searched 

eb = beam divergence of use r ' s  source. 

Equation (3.7-18) can be simplif ied by evaluating t h e  summation giving 
L531 

I$ = 2rrr s i n  (4) cosec (,) @b 

since P i s  moving a t  a constant velocity,  t he  length of time it w i l l  
take  P t o  move a dis tance LrL, i s  

where T = search time 

$ = t o t a l  path length 

v = t angen t ia l  veloci ty ,  

I n  order t o  f ind t he  minimum search time the  mlnimum value of the  path- 
length t o  veloci ty  r a t i o  must be found, The value of t h i s  r a t i o  w i l l  
depend on the  minimum s igna l  energy required, By- evaluating (3.7-20) 
using various r e s t r i c t i ons  the  f e a s i b i l i t y  of t h e  system can be determined 
i n  terms of t h e  search time and source power required. 



The descr ip t ion of t h e  system and method of )operation which has 
been given so  f a r  i s  s u f f i c i e n t  t o  permit a desc r ip t ion  of a method of 
implementation. The hardware r ea l i z a t i on  of the  system which has been 
proposed i s  p a r t i a l l y  given i n  Figs,  30 and 31, A more exact hardware 
desc r ip t ion  could only be given a f t e r  examining t h e  t rade-offs  between 
hardware and software i n  t h e  blocks which must perform t h e  computations. 
I n  the  receiver  espec ia l ly  it might be possible t o  have one small 
computat iona l  block which would perform the  various computations needed 
by changing t he  program used t o  perform t h e  calcula t ions ,  The increasing 
capab i l i ty  i n  the  large-scale-integration of in tegra ted c i r c u i t s  should 
make the  blocks which perform only computations read i ly  ava i l ab le  as 
custom designed devices. The cost  of such devices should be r e l a t i v e l y  
small compared t o  the  cos t  of t h e  l a s e r  and scanning system components. 

The navigation s a t e l l i t e ,  shown i n  Fig. 30, works i n  the  following 
manner, The s igna l s  from t h e  users and the  reference s t a t i ons  a r e  
focused through a f i l t e r  on t o  a high-resolution t e l ev i s i on  camera. 
The output from t h e  t e l ev i s i on  camera i s  fed t o  a threshold device 
which makes a binary decision on each resolvable image element as t o  
t h e  presence of a user. The outputs from the  threshold  device and t h e  
def lec t ion  c i r c u i t s  are fed t o  a device which ca lcu la tes  the  p ic tu re  
coordinates of t h e  s ignals  detected. One possible method of doing t h i s  
is t o  feed t he  hor izonta l  and v e r t i c a l  sweep s igna l s  i n t o  analog-to- 
d i g i t a l  converters which would yie ld  a d i g i t a l  representa t ion of t h e  
pos i t ion  of t h e  detected s igna l s .  The conversion process is  i n i t i a t e d  
by t h e  presence of an output from the  threshold device s o  only the  
coordinates of t h e  detected s igna l s  a r e  calculated.  The pic ture  
coordinates of the detected s igna l s  a r e  stored i n  a s e r i e s  of r e g i s t e r s  
u n t i l  the  scanning process is complete. The p ic tu re  coordinates of the  
reference s t a t i ons  and t h e i r  locations w i l l  be used t o  compute the  
locat ion of t he  users from t h e  pic ture  coordinate. I n  order t o  separate  
t he  reference s t a t i ons  from the  users,  the  system w i l l  have t o  be 
ca l ib ra ted  a t  regular  i n t e rva l s .  The i n t e rva l  between ca l ib ra t ions  
w i l l  depend on t h e  s t a b i l i t y  of t h e  s a t e l l i t e .  

Several  methods a r e  ava i l ab le  which could be used t o  c a l i b r a t e  
t h e  system and i n  add i t ion  some could be used t o  d i f f e r e n t i a t e  among 
users.  Since the  location of the  ground reference s t a t i o n s  is very 
wel l  known, only a very narrow beam divergence i s  required thus giving 
a much la rger  s i gna l  energy. A second threshold de tec to r  a l s o  operating 
on t he  ramera output could be used t o  d i s t ingu ish  t h e  very Large s igna l s  
of t h e  reference s t a t i ons  from the  much weaker s igna l s  of 'che users.  
The threshold l e v e l  of the  reference s t a t i o n  de tec to r  would be s e t  much 
higher than  t h a t  of t he  user l e v e l  detector .  A second method which 
could be used is  t o  a l l o t  c e r t a i n  time segments t o  d i f f e r en t  c lasses  of 
users. I n  such a system, users would be given a p r i o r i t y  which would 
determine the time segment t o  be used and the  ve loc i t y  of t he  user would 
determine the length of time between segments. By making t he  segments 
very long compared to the  time i n t e r v a l  between observations by the  
s a t e l l i t e  r e l a t i v e l y  inaccurate timing systems could be used, Another 
method which could be used i s  t o  use several  f i l t e r s  f o r  d i f f e r en t  
wavelengths. Such a system could be implemented by placing t he  f i l t e r s  
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on a wheel which r o t a t e d  i n  f r o n t  of t h e  camera and would r equ i re  t h a t  
s e v e r a l  d i f f e r e n t  types  of l a s e r s  be used, It might a l s o  be poss ib le  
t o  use a combination of these  methods at  t h e  same time i n  order  t o  
d i f f e r e n t i a t e  and i d e n t i f y  p a r t i c u l a r  users .  

The use r s  equipment, shown i n  Fig.  31, is  based on t h e  assumption 
t h a t  a n  es t imate  of t h e  current  p o s i t i o n  and i t s  accuracy is a v a i l a b l e .  
While t h i s  pos i t ion  es t imate  m y  range from a simple es t imate  made by 
t h e  p i l o t  from t h e  v e l o c i t y  and compass readings s ince  t h e  last 
pos i t ion  f i x  t o  t h e  soph i s t i ca t ed  es t imate  made by a n  i n e r t i a l  naviga- 
t i o n  s y ~ t e m  t h e  p r i n c i p l e  of operat ion i s  t h e  same. The estimated 
position and i t 6  accuracy i a  uded t o  con%rol  t h c  nctznnixg c i r c u i t s .  
Dcponiiing on t h e  accuracy of t h c  c a t i m t e d  pos i t ion ,  one of t h e  two 
p ropo~ed  acannlng ~yoterns would be chosen so  t h a t  only onc of t h e  
systems would be present  in  a c t u a l  equipment; . 

The system shown opera tes  i n  t h e  following manner. The s a t e l l i t e  
t r ansmi t s  t h e  ca lcu la t ed  loca t ion  of the  observed s i g n a l s  and t h e  
r ece ive r  s e l e c t s  t h e  one most l i k e l y  t o  r ep resen t  t h e  u s e r ' s  p o s i t i o n ,  
I f  a tiroe d i v i s i o n  system and/or wavelength d i v i s i o n  system is used 
then t h e  user  w i l l  have l i t t l e  t r o u b l e  i n  recognizing h i s  p o s i t i o n  
among t h e  o thers  t ransmi t ted  s ince  t h e s e  methods reduce t h e  number of 
pos i t ions  l i k e l y  t o  be received by a given c l a s s  of user .  Once t h e  
new p o s i t i o n  f i x  is  obtained it must be correc ted  t o  minimize t h e  
e f f e c t s  of a l t i t u d e  and r e f r a c t i o n .  Since t h e  co r rec t ions  must be 
done knowing t h e  he igh t  of t h e  use r  and t h e  weather condi t ions  (temp- 
e r a t u r e  and humidity a r e  needed f o r  r e f r a c t i o n  co r rec t ion ) ,  t h e  
co r rec t ions  can only b e  made by t h e  user .  Since t h e  p c s i t i o n  must 
be known i n  order  t o  make these  co r rec t ions  it may be  necessary t o  make 
the  correc t iono w i n g  t h e  est imated pos i t ion  and t h e n  make them again  
using t h e  pos i t ion  j u s t  ca lcula ted  t o  g e t  a more accura te  co r rec t ion .  
Depending on t h e  f ield-of-view and the  accuracy required t h e s e  co r rec t ions  
may be  umecessary  or s o  small t h a t  t h e y  could be est i rrated a t  t h e  s a t e l l i t e  
and t ransmi t ted  t o  t h e  use r  t o  reduce t h e  complexity of t h e  user  
equipment. The correc ted  pos i t ion  i s  then t ransmi t ted  t o  the  i n e r t i a l  
navigat ion  system. 

The remainder of t h e  blocks i n  the  u s e r  equipment diagram a r e  
connected wi th  t h e  determinat ion of t h e  scanning p a t t e r n  parameters.  
The est imated pos i t ion  i s  used t o  determine t h e  o r i g i n  of t h e  s p i r a l  
search  pa t t e rn  and might be ca l l ed  t h e  expected s a t e l l i t e  pos i t ion .  
The es t i rmted  pos i t ion  i s  a l s o  used t o  c a l c u l a t e  t h e  expected d i s t a n c e  
from t h e  s u b s a t e l l i t e  point  which is  needed t o  evalua te  t h e  s i z e  of the  
region t o  be searched,  The ve loc i ty ,  time, estimated pos i t ion  and type  
of navigat ion  system providing the  est imated pos i t ion  must a l l  be  
considered i n  providing an  evalua t ion  of t h e  accuracy of t h e  p o s i t  ion  
es t imate .  The est imated s a t e l l i t e  pos i t ion ,  t h e  d i s t ance  t o  t h e  sub- 
s a t e l l i t e  poin t ,  and t h e  pos i t ion  accuracy es t imat ion  a r e  a l l  f ed  i n t o  
t h e  scan genera tor  which aims t h e  beam and provides t h e  scanning s i g n a l s  
necessary t o  perform t h e  search  p a t t e r n  descri3ed i n  Sect ion  3.7.2. 
The complexity of t h e  u s e r ' s  equipment w i l l  depend on how many of t h e  
c a l c u l a t i o n s  needed can be performed by equi.@ment a l r eady  e x i s t i n g  i n  
t h e  present  navigat ion  system. I f  t h e  present  navigat ion system is 
complicated and has  t h e  computational capaci ty  needed, then  t h e  a d d i t i o n a l  



equipment w i l l  cons i s t  rnainly of t h e  l a s e r  and scanning system, Since 
few navigat ion  systems have t h e  computational capaci ty  needed a more 
r e a l i s t i c  approach would be t o  combine t h e  navigat ion  systems s o  a s  t o  
have common components which would then reduce t h e  cos t .  

The o p t i c a l  navigat ion  system j u s t  described is  intended t o  
opera te  i n  conjunct ion wi th  another  navigat ion system. The f e a s i b i l i t y  
of an o p t i c a l  navigat ion  system w i l l  probably depend d i r e c t l y  on t h e  va lue  
of t h e  est imated p o s i t i o n  accuracy, s ince  t h i s  quan t i ty  w i l l  d i r e c t l y  
determine t h e  s i z e  of t h e  region  t o  be searched. I f  t h e  search t ime or  
s i g n a l  energy required f o r  the  s i z e  of a  t y p i c a l  region t o  be searched 
i s  t o o  l a rge  f o r  t h e  systems which might be  a v a i l a b l e  i n  t h e  near 
fu tu re ,  t hen  a n  o p t i c a l  navigat ion system w i l l  no t  be f e a s i b l e .  

3.8 Signa l  Energy Received 

In t h e  passive caoe the  signal.-to-noise r a t i o  could be determined 
from t h e  i r r ad iance  ( inc iden t  power) due t o  the  source and the background. 
I n  the  a c t i v e  case, however, the  energy i n  t h e  s i g n a l  and t h e  background 
noise  must be used s ince  t h e  dura t ion  of t h e  s i g n a l  and t h e  noise w i l l  
no t  be equal .  

To c a l c u l a t e  the  energy received a t  t h e  s a t e l l i t e  the  s p a t i a l  
energy d i s t r i b u t i o n  of the  l a s e r  beam must be known. The in tens  i t y  
d i s t r i b u t i o n  i n  a  l a s e r  beam is approximately the  same a s  the  
Fraunhoffer d i f f r a c t i o n  pa t t e rn  due t o  a  plane wave inc ident  on a 
c i r c u l a r  ape r tu re  (e .g. ,  a  l e n s )  [54]. The condi t ions  under which 
t h i s  p a t t e r n  i s  produced a r e  i l l u s t r a t e d  i n  Fig .  32 and t h i s  s i t u a t i o n  
corresponds t o  a  1.aser which uniformly i l luminates  a n  i d e a l  lens .  The 
i n t e n s i t y  d i s t r i b u t i o n  (or  i r r ad iance )  on t h e  plane a t  a  given d i s t a n c e  
is given by C55, P. 3961 

where I ( ~ )  = i r r ad iance  a t  point  P 

6 = angular  dev ia t ion  from t h c  cen te r  Line 

h = wavelength of r a d i a t i o n  inc ident  on t h e  ape r tu re  

a  = aper tu re  or lens  radius  

I(O) = i r r ad iance  on the  cen te r  l i n e  a t  a  d i s t ance  rs from t h e  
source 

Ji = f i r s t  order  Bessel funct ion ,  



FIGURE 32 F R A U N H O F E R  DIFFRACTION B Y  A CIRCULAR A P E R T U  RE.  



Equation (3.8-1) i s  p l o t t e d  i n  F ig .  33. The use of po la r  coord ina tes  
L:; i nd i ca t ed  by t h ~  geometry of t ho  s i t u a t i o n  under cons ide ra t ion .  The 
Lntcnn i t y  d 1otu.i but lon of If'l.y, 33 wur: quuLLtutj ve ly  dartcrl bed i n  Sc!ctLon 
2.3.1,  

I n  o rde r  t o  avoid cons ider ing  t h e  wavelength of t h e  l i g h t  being 
used and t h e  diameter of t h e  l ens  t h e s e  q u a n t i t i e s  w i l l  b e  r e l a t e d  t o  
t h e  beam divergence.  The term "beam divergence" can be def ined  i n  
var ious  ways b u t  i n  t h i s  r e p o r t  it w i l l  b e  taken t o  be t h e  plane a n g l e  
between t h e  3 dB o r  h a l f  power po in t s  e x a c t l y  opposi te  each o the r  on 
t h e  i n t e n s i t y  d i s t r i b u t i o n .  The h a l f  power po in t  i s  t he  po in t  a t  
which t h e  i n t e n s i t y  i s  equal  t o  h a l f  t h e  maximum value.  Using t h i s  
d e f i n i t i o n ,  t h e  beam divergence can be found by so lv ing  t h e  equat ion  

f o r  0 which w i l l  b e  equal  t o  h a l f  t h e  beam divergence when ( 3  '8-3) is 
s a t i s f l e d .  The s o l u t i o n  t o  (3.8-3)  is  

By s o l v i n g  f o r  Ira  t h i s  f a c t o r  can be e l imina ted  from (3.8-1) and 6 
introduced i n  i t s  place.  From (3.8-5) b 

S u b s t i t u t i n g  (3.8-6)  i n t o  (3 -8-1)  and no t ing  t h a t  

f o r  sma l l  ang le s  g ives  



FIGURE 33 INTENSITY DlSTRlE3UTlON OF THE FRAUNHOFER 
DIFFRACTION PATTERN OF A UNIFORMLY ILLUMINATED 
CIRCULAR APERTURE.  



where I ( p )  = i r r a d i a n c e  a t  a d i s t a n c e  p from the  c e n t e r  l i n e  and i n  a 
E plane at  a d i s t a n c e  rs from t h e  source 

Ob 
= beam divergence 

r = d i ~ t & n C e  t o  t h e  s a t e l l i t e .  
S 

It should be noted t h a t  i f  it 1s dcoi red  t o  i n c r c a ~ c  t h e  beam divergence 
while keeping t h e  a p e r t u r e  diameter  cons tan t ,  a d ive rg ing  l e n s  could 
be placed i n  t h e  a p e r t u r e .  However, it is  not  poss ib l e  t o  reduce the  
beam divergence below t h e  d i f f r a c t i o n  l i m i t ,  i .e . , t h e  beam divergence 
which would be present  w i th  no l ens .  

I n  order  t o  s i m p l i f y  t h e  problem somewhat, it would be d e s i r a b l e  
t o  approximate t h e  i n t e n s i t y  d i s t r i b u t i o n  us ing  s impler  f u n c t i o n s .  
From F ig .  33 it can be seen  t h a t  when t h e  diameter  of t h e  reg ion  under 
cons ide ra t ion  is l e s s  than twice  t h e  beam divergence (i .e . ,  
x < 3.2327), t h e  i n t e n s i t y  d i s t r i b u t i o n  can be  f a i r l y  w e l l  approximated 
byMa s t r a i g h t  l i n e .  The b e s t  s t r a i g h t  l i n e  approximation ( i n  t h e  l e a s t -  
square  s ense )  t o  (3.8-8) is 

f o r  0 < x < 3 .23zr[ and zero  otherwise.  - - 

m u a t i o n  (3.8-9)  i s  a l s o  p l o t t e d  on Fig .  33 f o r  comparison. A t h r e e -  
dimensional  p l o t  of the  approximate i n t e n s i t y  d i s t r i b u t i o n  would be 
cone shaped. 

The f r a c t i o n a l  amount of power wi th in  a c i r c l e  of r ad ius  x using 
t h e  exac t  i n t e n s i t y  d i s t r i b u t i o n  (3.8-8)  i s  [55, p. 3981. 



Subst i tu t ing x = 3.2327 in to  (3.8-11) shows t ha t  t he  amount of power 
within t he  region over which the approximation (3.8-9) i s  being made 
i s  83.2$ of the  t o t a l  power. Hence f o r  p r ac t i c a l  purposes the  
assumption t ha t  the  in tens i ty  i s  zero f o r  x 9 3.2327 corresponds t o  
neglecting only a very small port ion of t he  t o t a l  incident power. 

The a c t u a l  power incident on a given region i s  found by 
in tegrat ing the  irradiance over the desired region. The t o t a l  power 
incident on the region over which the approximation (3.8-9) is being 
mde is  

' In t h e  case when ~ ( p )  i s  the  exact irradiance (3.8-8) 

and when I(P) i s  the approximate irradiance (3.8-9) 

Hence t h e  replacement of t he  exact d i s t r i bu t i on  by t he  approximate 
d i s t r i bu t i on  implies t h a t  a larger  amount of power i s  incident on t h e  
region being considered than i s  a c tua l l y  present. In  order t ha t  the 
t o t a l  incident power i n  each case be equal the  in tens i ty  I*(o) of' the  
approximate d i s t r i bu t i on  w i l l  be reduced by the  f ac to r  

so  t ha t  



which w i l l  make the t o t a l  incident powers equal. 

Thc maximum in tens i ty  I ~ ( o )  w i l l  f i r s t  be calculated under t h e  
usaumption t ha t  no d i f f r ac t i on  occurs. I f  thc  d i f f r ac t i on  phenomena 
did not occur, it would be expected that the power i n  the projected 
beam would be uniformly d ic t r ibu ted  i f  t he  power incident on the 
aper ture  was uniformly d i s t r ibu ted .  The assumption t ha t  both the  
power i n  the projected beam as well  a s  the power incident on the 
aper ture  a r e  uniformly d i s t r ibu ted  y ie lds  a very simple solution.  
Under t h i s  assumption the  l a se r  can be considered a s  a point source 
with radiant  i n t ens i t y  

where J = radiant  in tens i ty  i n  ~ / s r  

W = power of t h e  l a se r  i n  W 

f3 = so l id  angle subtended by a beam with divergence f3 n,$ b * 

The i r radiance a t  a distance r from the source is 
s 

2 where 1 (0 )  = i rradiance i n  ~ / m  under t h e  assumption tha t  t he  energy u i n  the  beam i s  uniformly d i s t r ibu ted .  

Equations (3.8-16) and (3.8-17) a r e  the  radiometric equivalents of the 
photometric equations (3.6-2) and (3.6-6), respectively.  

The in tens i ty  a t  the  o r ig in  would be given by (3.8-17) i f  
d i f f r ac t i on  did  not occur. Since d i f f r ac t i on  does occur, t h e  ac tua l  
value of t he  in tens i ty  a t  t he  o r ig in  must be somewhat l e s s  than t ha t  
given by (3.8-17). Using t he  conservation of energy, the maximum 
in t ens i t y  can be found by equating the  t o t a l  power present i n  the 
d i f f rac t ion  pa t te rn  t o  the power of t h e  l a se r  which gives,  using 
(3.8-81, 



Substi tuting x = gives 

Hence, 

- 
W~ - 

Solving f o r  I ~ ( o )  gives 

Rearranging (3.8-22) ol igh t ly  gives 

but the  f i rs t  fac tor  is j u s t  I (0) using (3.7-3) an& (3.8-17), hence, u 



The above equation shows t h a t  t he  i n t ens i t y  a t  the center  of the  
d i f f r ac t i on  pa t t e rn  is  65.3% of the  i n t ens i t y  which would be present 
i f  the energy from the l a s e r  were uniformly d i s t r i bu t ed  over a beam 
of angular width 8 b ' 

3.8.2 
S a t e l l i t e  

The a n a l y s i ~  j u s t  performed did not consider the e f f ec t s  of the 
btmoophere and the op t i c a l  components, and t h e m  e f f e c t s  must be 
considered cince the  irradiance a t  t he  s a t e l l i t e  w i l l  be reduced by 
absorption i n  these  components. To determine t he  i r radiance at the 
s a t e l l i t e ,  the  t o t a l  transmission fac to r ,  which is the  product of a l l  
the  individual  transmission f ac to r s  along the transmission path, w i l l  
be determined. The irradiance a t  t h e  s a t e l l i t e  w i l l  then be the  
irradiance as determined i n  the  loss-free case i n  Section 3.8.1 
mult ipl ied by t h e  t o t a l  transmission fac to r .  

The t o t a l  transmission fac to r ,  which is the  r a t i o  of the  i n t ens i t y  
d i s t r i bu t i on  present t o  t h a t  which would be present  i n  the absence of 
any absorption or a t tenuat ion along t h e  transmission path, is 

T T = T  T T T t a r f  

where T = t o t a l  transmission f ac to r  
T 
T :- 0.9 = approximate transmission f a c t o r  of thc  op t i c a l  t 

components of the  source 

T = 0.1 = atmospheric transmission f a c t o r  from Section 3.3 a 
Tr = 0.9 E approximate transmission f ac to r  of the op t i c a l  

components i n  the receiver  

T = 0.5 = transmission f ac to r  of the o p t i c a l  f i l t e r  (from 
f Table 10).  

Equat ion (3.8 -26 ) becomes 

Using the  approximate in tens i ty  d i s t r i bu t i on  (3.8-9) and t he  appropriate 
correct ion f ac to r s  the  in tens i ty  d i s t r i bu t i on  a t  the s a t e l l i t e  is 



using (3.8-15) and (3.8-24). Subst i tu t ing the  values of each of the 
fac tors  i n  (3.8-28) gives 

I ~ ( P )  = 0.0239 IU(0) I ~ ( P )  (3.8-29) 

Using (3.8-10) t o  eliminate x gives 

where 

One of the  assumptions t ha t  was made i n  a r r iv ing  a t  t h i s  r e s u l t  
was t h a t  the  aperture o r  the  lens on which t he  l a s e r  was focused was 
uniformly illuminated. I f  the  illumination on t h e  aper ture  i s  not 
uniform, then a  d i f f e r en t  d i f f r ac t i on  pat tern  w i l l  r e su l t .  Since it 
might be expected t ha t  the  illumination near the  edges would be l e s s  
than t h a t  at the center of t he  aperture,  the  d i f f r ac t i on  pat tern  in 
t h i s  case w i l l  be examined. I f  the normalized i l lumination on the  
aper ture  has the  form known as the  inverted parabola type of 
i l luminat i  on 

where ~ ( p )  = normalized irradiance on the aper ture  

P = r a d i a l  distance from center of the aper ture  

D = diameter of the aperture 

n  = form factor ,  



then t h c  dLf'Cruc.LLon pat tern  i:; 1;iven by [>6] 

where ~ ( x )  = normalized irradiance i n  t he  d i f f r ac t i on  pa t t e rn  

x = r a d i a l  d is tance  from the  center  of the  pa t t e rn  

Cn = a constant 
-- 

(C = 2, c = 8, c = 48, e tc . ) .  
0 1 2 

I n  t h e  case of uniform i l lumination n = 0. Edch of these d i f f r a c t i o n  
pat terns  is  very similar t o  the one i n  Fig. 32. I f  t he  aper ture  
i l lumination was s i gn i f i c an t l y  non-uniform, then a la rger  value of n 
could be chosen t o  more c lose ly  approximate the a c t u a l  d i s t r i bu t i on .  
The choice of a l a rge r  value of n would only require changing the  
constants involved in the analys is  and not t he  method used. A s  n 
increases the  t r i angu l a r  approximatiorr t o  the d i f f r ac t i on  pat tern  would 
become wider and the i n t ens i t y  a t  t h e  o r ig in  would decrease. When 
n = 2 f o r  example the pat tern  would be about 3376 wider a t  the  hal f  
power points  and the i n t ens i t y  a t  the  o r ig in  would probably be reduced 
by a similar amount. The f a c t  t ha t  t h e  a c t u a l  d i s t r i bu t i on  of energy 
may be somewhat non-unif orm would not introduce changes s i gn i f i c an t  
enough t o  change the  conclusion on the  f e a s i b i l i t y  of a n  op t i c a l  
navigation system, however. 

3.8.3 Tota l  Signal  Energy Received 

Now t h a t  t he  approximate form of the in tens i ty  d i s t r i bu t i on  i n  the 
l a s e r  beam has been found, the  t o t a l  energy received can be calcula ted.  
The energy received per un i t  area  is  normally denoted a s  the  "exposure" 
and is equal  t o  the  time i n t eg ra l  of t h e  irradiance.  Assuming t h a t  t h e  
objective l ens  is  small enough s o  t h a t  t h e  i r radiance i s  constant over 
the a r ea  of the  lens t he  received energy is the product of the  object ive  
a rea  and the  exposure. The exposure w i l l  be determined from the  
approximate in tens i ty  d i s t r i bu t i on  and the  motion of the  l a s e r  beam 
as it was described i n  Section 3.7.2. 

To determine the s igna l  energy received the  motjan of beam as it 
scans over t h e  s a t e l l i t e  must be known, Since the  s i gna l  energy 
received w i l l  not be the  same f o r  a l l  poss ible  paths, t he  path which 
represents the  worst case w i l l  be chosen. B c h  of the c i r cu l a r  
scanning paths (see Fig. 2 9 )  i s  separated by an angular separation of 
Bb but s ince  the ac tua l  width of each beam is 28b the  energy d i s t r i bu t i on  
along each path overlaps with the  previous and the following path. I n  
Pig. 29 the beam from the l ase r  was assumed t o  be uniform so  t h a t  the  
c i r c l e s  representing the  beam ac tua l l y  represent  the hal f  -power point  
of t he  a c t u a l  energy d i s t r i bu t i on  i n  the beam. The worst possible 
posi t  ion at  which the s a t e l l i t e  could be located wmld be halfway 
between two of the c i r cu l a r  scanning paths. In t h i s  posit ion,  i l l u s t r a t e d  



i n  F ig .  34, t h e  beam i n t e n s i t y  would be l e a s t  and t h e  beam would be  
inc iden t  on t h e  s a t e l l i t e  f o r  t h e  s h o r t e s t  per iod of time. If t h e  beam 
scanned a c r o s s  the  s a t e l l i t e  i n  any o ther  manner t h e  i n t e n s i t y  would be 
h ighe r  and t h e  d u r a t i o n  would be  longer.  A h igher  rece ived  s i g n a l  
energy would occur i f  t h e  s a t e l l i t e  were c l o s e r  t o  t he  next  scanning 
pa th  s i n c e  the  i n t e n s i t y  and d u r a t i o n  would be g r e a t e r  on t h e  fo l lowing  
scanning pa th ,  The case  i n  which t h e  s a t e l l i t e  i s  loca ted  halfway 
between two of t h e  c i r c u l a r  scanning paths  t hus  r e p r e s e n t s  t h e  s i t u a t i o n  
i n  which t h e  s i g n a l  energy rece ived  i s  t he  l e a s t  and t h e  system must  
operate  i n  t h i s  s i t u a t i o n  i n  order  t o  perform r e l i a b l y .  

To determine the  exposure i n  t h e  worst  cace, t he  i r r ad i ance  a long  
t h e  path J u s t  deocrlbed m u s t  be found. Since t h e  i r r a d i a n c e  has been 
dctcrrrlined i n  p o h r  coord ina tes ,  i f  t he  r a d i a l  d i s t a n c e  t o  t h e  c e n t e r  
ol' t he  d i s t r i b u t i o r i  i~ found a s  a func t ion  of t h e  p o s i t i o n  a long  t h e  
worst-case pa th  t h e n  t h e  i r r a d i a n c e  d e s i r e d  w i l l  be  known. 

If t h e  beam divergence,  8b, is much s m a l l e r ,  'bhan . t h e m c  s i z e  of t h e  
reg ion  t o  be  searched,  BT, then  t h e  worst-case pa th  w i l l  approximately 
be a s t r a i g h t  l i n e  and, from Pig .  35, 

where p '  = d i s t a n c e  a long  t h e  worst-case path.  

And 

S u b s t i t u t i n g  (3.8-35) i n t o  (3  -8-31) g ives  t h e  approximate i r r a d i a n c e  
d i s t r i b u t i o n  a long  t h e  worst-case path.  

Equation (3.8-37) r e p r e s e n t s  t h e  i n t e r s e c t i o n  of a plane ( t h e  s t r a i g h t  
l i n e  pa th )  and a cone (the i r r a d i a n c e  d i s t r i b u t i o n )  which is t h e  hyperbola 
p l o t t e d  i n  F ig ,  36. 

To c a l c u l a t e  t he  exposure, the i r r a d i a n c e  m u s t  be  expressed as a 
f u n c t i o n  of t ime.  The scanning motion was assumed t o  move wi th  a 
cons tan t  t a n g e n t i a l  v e l o c i t y  i n  t h e  plane of t h e  s a t e l l i t e  and under 
t h i s  assumption 
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Figure 35 Intensity Distribution Along The Worst-Case Path 



where pF  = distance along worst-case path 

v  = veloci ty  (see Section 3.7.2) 

t = time. 

The irradiance on t he  s a t e l l i t e  i s  therefore 

and the exposure w i l l  be given by 

where the  time i n t eg ra l  must be evaluated over t h a t  period of time i n  
which t h e  beam i s  incident on t h e  s a t e l l i t e .  The t o t a l  d is tance 
which the beam moves while it i s  incident on t h e  s a t e l l i t e  (along t he  
worst-case path) i s  rseb and s ince  the  beam moves a t  a constant 
ve loc i ty  the t o t a l  duration of the s igna l  i s  

Since t he  irradiance is an even function over symmetric l imi t s  (3.8-40) 
bec omes 

Rearranging (3.8-42) s l i g h t l y  t o  simplify t he  in tegrat iou 



which can be evaluated using [57, p. 561 

Using (3.8-44) and (3.8-41) t h e  i n t eg ra l  (3.8-43) becomes, a f t e r  some 
manipulation, 

where E = exposure in ~ / m  2 

W = l a s e r  power i n  W 

v = t angen t ia l  scanning veloci ty  

Bb = beam divergence at  t h e  half-power points  

r = dis tance  t o  the s a t e l l i t e  i n  m. 
S 

A s  a check on the  r e s u l t  t h e  i n t ens i t y  d i s t r i bu t i on  of Fig. 36 was 
approximated by a t r i a n g l e  ( indicated by t he  dashed l i ne s  ) and the  
exposure was determined. Using t h i s  approximation t he  constant  i n  
(3.8-46) was found t o  be 0.0139 which tends t o  confirm the  r e s u l t  
found using t he  exact  d i s t r ibu t ion .  

Using t he  assumption t h a t  t he  i r radiance is  uniform within t he  
a rea  of t h e  objective lens  the  received s i gna l  energy i n  the  worst-case 
is 

where J i s  the s i gna l  energy received in  6, Since t h e  projected beams 
along adjacent  scanning paths overlap the  a c t u a l  energy received i n  
the  worst-case would be twice t h a t  obtained by using (3.8-48), i f  the 
scanning motion were perfect ,  The motion of the  user and imperfect 



mechanical components, however, w i l l  tend t o  introduce perturbations i n  
t he  c i r c u l a r  scanning pat tern  so  t ha t  instead of multiplying (3.8-48) by 
two, a value of 1.5 w i l l  be used t o  compensate f o r  the perturbations of 
the  scanning motion. Hence, 

In  order t o  introduce the  parameters of the  navigation system in to  
(3.8-49), the t angent ia l  scanning veloci ty  w i l l  be eliminated using 
(3.7-19) and (3.7-20) giving 

J = 
0.026 WAT 

8 e 
2n rs2 s in2  ('2) cosec (+) 

\ 

4 -2  X lom3 WAT s i n  (? 

where T = search time 

BT = divergence of the region t o  be searched given by (3.7-13) 

Ob = beam divergence. 

This expression i s  val id  provided the scanning path can be approximated 
by a s t r a igh t  l i ne  and t h i s  condition i s  s a t i s f i e d  i f  eb << eT. The 
implication of t h i s  requirement i s  tha t  a t  l e a s t  f i v e  or more revolutions 
of the  source beam should be required i n  order t o  cover the region t o  
be searched. I f  the  region t o  be searched i s  so  small t ha t  only a few 
revolutions of the source would be required then it would be more 
advantageous t o  increase the  source power and beam divergence and 
el iminate the  scanning equipment a l together .  

In  the  case when the  region t o  be searched i s  small enough t o  avoid 
scanning the  region the  irradiance incident on the  s a t e l l i t e  w i l l  be given 
by (3.8-31) but  the value w i l l  be constant over the  duration of the  
s igna l  assuming a rectangular pulse. In  order t o  give a reasonable 
s igna l  s t reng th  over the  en t i r e  region t o  be searched t he  beam divergence 
w i l l  be s e t  equal  t o  t he  divergence of the  region t o  be searched, i .e . ,  
eb = BT, so t ha t  the region i n  which the  s a t e l l i t e  should be located is 
within t he  half-power points of the projected beam. The irradiance i n  
t he  worst-case w i l l  be when t he  s a t e l l i t e  i s  located a t  the  half-power 
points so  t ha t ,  from (3.8-31) 



and assuming a rec tangular  pulse the  received s i g n a l  energy w i l l  be 

where J i s  t h e  received s i g n a l  energy i n  joules .  

The f a c t  t h a t  (3.8-51) implies  t h a t  eb should be l a rge  and (3.8-53) 
implies t h a t  Bb should be small  i n  order  t o  ob ta in  the  same r e s u l t  m y  
seem cont radic tory ,  It should be noted, however, t h a t  t h e s e  r e s u l t s  
were derived under two d i f f e r e n t  s e t s  of circumstances and (3.8-51) is  
app l i cab le  only when Bb << BT and (3.8-53) is app l i cab le  only when Bb 
is g r e a t e r  than  t h e  d i f f r a c t i o n  l i m i t ,  The impl ica t ions  of (3.8-51) 
a r e  t h a t  i f  a scanning system i s  t o  be used then  t h e  value of Bb should 
be chosen as l a rge  a s  poss ib le .  I n  other  words i n  t h e  t rade-off  
between the  number of revolu t ions  of t h e  scanning beam requi red  and 
the  beam divergence, a h igher  received s i g n a l  energy w i l l  r e s u l t  i f  
t he  beam divergence is increased t o  keep t h e  number of revolu t ions  
required t o  a minimum, I n  a system i n  which the  beam divergence i s  
increased t o  cover t h e  des i r ed  region of the  sky . the  minimum value 
which t h e  beam divergence can have i s  eT and i n  both  systems t h e  
minimum beam divergence i s  given by t h e  d i f f r a c t i o n  l i m i t ,  

Now that the  s i g n a l  energy received can be determined i n  terms 
of t h e  parameters of the  navigat  ion system, the  s ignal - to-noise  r a t i o  
can be determined. The f e a s i b i l i t y  of t h e  a c t i v e  o p t i c a l  navigat ion 
system w i l l  be determined from the  s ignal - to-noise  r a t i o  which can be 
expected f o r  a t y p i c a l  s e t  of m v i g a t i o n  ~ y s t e m  parameters. A s  i n  t h e  
passive case t h i s  a n a l y s i s  w i l l  i l l u s t r a t e  the  interdependence between 
t h e  var ious  system parameters and determine whic h a r e  c r i t i c a l .  

3.9 Analysis of t h e  Signal-to-Noise Rat io  i n  the  Active Case 

To analyze t h e  f e a s i b i l i t y  of a n  a c t i v e  o p t i c a l  navigat ion system 
the  s ignal- to-noise r a t i o  under t y p i c a l  condit ions w i l l  be examined 
a s  it was i n  the passive case.  The signal- to-noise r a t i o  which w i l l  
be used i s  t h e  r a t i o  of t h e  v a r i a t i o n  i n  the  energy received on a 
resolvable  image element due t o  t h e  presence of a s i g n a l  t o  the  va r i a -  
t i o n  i n  t h e  energy on an image element due t o  v a r i a t i o n s  i n  t h e  background. 
The same d e f i n i t i o n  was used i n  t h e  a n a l y s i s  of the pass ive  case. 

A s  was done i n  t h e  passive case  and w i l l  be done i n  t h e  a c t i v e  case 
the  method of a n a l y s i s  w i l l  be based on a n  ana lys i s  of t h e  image 



ava i lab le  t o  t h e  detector  and not the combination of the  two. While 
technological  advances a r e  continually improving the  detectors  
avai lable ,  e.g., 659, 603, i f  the image avai lable  does not have 
su f f i c i en t  qua l i t y  then no detector  improvements w i l l  change the 
s i tua t ion .  An extensive analysis  of the  re la t ionsh ip  between the  
i m g e  and t h e  image detector  has been made by Schade [25,62]. It i s  
shown tha t  t h e  presence of noise i n  the  detector  and the quantum 
l imita t ions  of the  photosensitive surfaces used f o r  detect ion w i l l  
reduce t h e  resolut ion i n  the  resu l t ing  s i gna l  which represents the  
o r ig ina l  image. I n  a detector  which consis ts  of a number of cascaded 
stages of t he  same type, such a s  an  e lec t ron ic  image i n t ens i f i e r ,  the 
resolut ion w i l l  de te r io ra te  d i r e c t l y  with the square root  of the 
number of stages used [62, p. 841. Hence in  a system i n  which resolut ion 
i s  very important, the l e a s t  number of photosensitive surfaces possible 
should be used i n  the  detector.  I n  addi t ion spec ia l  consideration must 
be given t o  uniformity in the  photosensitive surfaces so t ha t  an  
image of uniform qua l i ty  i s  produced, 

An op t i ca l  image can be analyzed i n  severa l  ways but i n  t h i s  
s i t ua t i on  the  analysis  w i l l  be based on the  changes which occur i n  t he  
nonuniform background. Since background var ia t ions  presented a major 
problem i n  the  passive case it i s  reasonable t o  suspect t h a t  background 
var ia t ions  w i l l  a l s o  cause problems i n  the ac t ive  case. It i s  a l s o  
reasonable t o  expect t h a t  clouds w i l l  again be the  major cause of 

i n  the background because of t h e i r  rad ica l ly  d i f f e r en t  
op t ica l  propert ies.  A major problem i n  designing op t i ca l  systems 
which operate i n  the  presence of nonuniform backgrounds is t o  provide 
su f f i c i en t l y  strong signal ,  I f . . .  so  that the  peak s igna l  due t o  t he  
f i e l d  moving from one element of background t o  another w i l l  exceed t h e  
t a rge t  contras t  s i gna l  only i n  sane minor, acceptable port ion of the 
time.. . It i s  t o  be real ized i n  the  foregoing that no consideration has 
been given t o  op t ica l  gain, c e l l  noise, c e l l  s ens i t i v i t y ,  system noise, 
e tc .  The above i s  a c r i t e r i o n  only f o r  t h e  a b i l i t y  t o  recognize a 
probable t a rge t  c igna l  from background c l u t t e r .  " [63] Thus t o  analyzc? 
an op t ica l  systerr~ with a nonunirorm buckground the  magriitutle or  t he  
a3.gnul var Iutiori tnur;t be corrtpared t o  t hc  rmgnitudc of the  var ia t ions  in  
the  background urid t h i s  is exact ly  what t he  signal-to-noise r a t i o  
defined prcvFously i s  expected t o  do. 

3.9.2 Albedo Variations and the Varia t ional  Noise Power 

I n  order t o  determine the  var ia t iona l  noise power on each resolvable 
image element t he  causes of the  var ia t ion  must be known. The primary 
var ia t ions  i n  the background a r e  due t o  t he  changing r e f l ec t i ng  proper t ies  
of the  weather formations which a r e  present i n  t h e  image background. 
Although the steady-state so la r  irradiance is modulated by 0.1% 664 3 
due t o  changes in'che sun's surface t he  primary var ia t ions  i n  t he  
background a r e  due t o  changes i n  t he  albedo, the  average ref lectance,  
and these changes a r e  caused by both spec t r a l  and spac ia l  var ia t ions .  
"It i s  important t o  note that  f o r  a receiver with spec t r a l  widths of 
100 angst  rans or l ess ,  looking a t  only par t  of t he  planet, the 
published (albedo) values may be considerably i n  error ,  perhaps by a s  
much a s  a f ac to r  of three, as  a r e s u l t  of geographical and spec t r a l  



v a r i a t i o n s  in  albedo" [37, pp. 269-2701. It i s  important t o  note  t'nat 
t h e  r e f l ec tance  values given f o r  v a r i o ~ s  backgrounds may or may not be 
the  same a s  the p lanet  albedo, depending on the  type of measurements, 
due t o  t h e  p roper t i e s  of t h e  intervening atmosphere. 

A s tudy of t h e  da ta  a v a i l a b l e  on t h e  s p e c t r a l  and s p a c i a l  
v a r i a t i o n s  of t h e  albedo ind ica te s  t h a t  a very wide range of values 
w i l l  be encountered, but t h a t  the  g r e a t e s t  v a r i a t i o n s  w i l l  e x i s t  
between c l e a r  and cloudy a reas  [65]. One source s t a t e s  t h a t  t h e  a lbedo 
v a r i e s  l i n e a r l y  from 0.17 t o  0.70 according t o  t h e  f r a c t i o n a l  amount of 
cloud cover wi th  t h e  l a r g e r  albedo value be ing  as soc ia t ed  wi th  100% 
cloud cover [66]. The simple l i n e a r  r e l a t i o n s h i p  is only v a l i d  f o r  
moderate amounts of cloud oover and represents  the  average value over 
l a r g e  a r e a s .  I n  a r ecen t  s e r i e s  of a r t i c l e s ,  t h e  albedo of clouds was 
ca lcu la t ed  t h e o r e t i c a l l y  and under various condi t ions  it was found t h a t  
the  albedo can vary from almost zero  t o  over 0.8 [67-697. Simi lar  
v a r i a t i o n s  i n  t h e  cloud albedo were reported previous ly  [32, p. 7-51. 
A summary of t h e  measured d.ata on t h e  albedo of var ious  types of clouds 
and f o r  c l e a r  a r e a s  is given i n  Fig .  37 [TO, p. 751. Theore t i ca l  
ca l cu la t ions  have given a n  even l a r g e r  range of values f o r  the  albedo 
over c l e a r  a reas  [7l]  bu t  s a t e l l i t e  measurements seem t o  confirm the  
r e s u l t s  of Fig. 37 which g ive  r e l a t i v e l y  low values f o r  the  albedo 
over c l e a r  a r e a s  L72-J. So f a r  no mention has been made of the  s p e c t r a l  
v a r i a t i o n s  of t h e  a lbedo but  it has been found t h a t  the  r e f l ec tance  of 
clouds is r e l a t i v e l y  cons tant  s p e c t r a l l y  [73, p. 301 so  t h a t  the  
v a r i a t i o n s  given i n  Fig.  37 can a l s o  be assumed t o  ind ica te  t h e  
magnitude of t h e  s p e c t r a l  v a r i a t i o n s .  

From t h e  d a t a  presented i t  i s  j u s t i f i e d  i n  assuming t h a t  t h e  
v a r i a t i o n  i n  t h e  a lbedo can be taken as 0.8 f o r  smal l  s p e c t r a l  regions 
and small observed a r e a s ,  The v a r i a t i o n  i n  t h e  background noise  power 
on an  ind iv idua l  image element can then be determined using (3.5-6) by 
r e p l a c i , ~  ah by Ash which i s  the v a r i a t i o n  of the  albedo at a given 
wavelength. Using t h e  same assumptions a s  were used t o  de r ive  (2.7-10) 
t h e  v a r i a t i o n a l  background noise  power on each re so lvab le  image element 
can be determined f r ~ m  (3.5-6) by mult iplying by t h e  ob jec t ive  a rea  and 
d iv id ing  by t h e  number of resolvable  image elements.  Since a very  
narrowband f i l t e r  w i l l  be used t o  f i l t e r  out a s  much of t h e  background 
noise  as poss ib le ,  t h e  v a r i a t i o n a l  background no i se  power w i l l  be t h e  
sum of %he v a r i a t i o n  of the  energy i n  t h e  f i l t e r  passband plus the  
v a r i a t i o n  of t h e  energy i n  t h e  f i l t e r  stopband. Under these assumptions 
the  v a r i a t i o n a l  background noise  power on a n  ind iv idua l  resolvable  image 
element is : 

A 2 GCD 
s in2  m) -+ fs ( l -p , )  

s i n  (%)I 2re 
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FIGURE 37SUMMARY OF T H E  PROBABLE S P R E A D  OF 

R E F L E C T A N C E  FOR VARIOUS CLOUDS.[~O] 



where PN = v a r i a t i o n a l  noise power on a n  ind iv idua l  resolvable  image 
element 

A = a r e a  of t h e  objec t ive  lens  

IT = t o t a l  noise  i r r ad iance  from Fig.  23 

Aa = 0.8 = change i n  t h e  albedo which can be expected f o r  
d i f f e r e n t  backgrowds 

a = 0,4  = average albedo used t o  der ive  r e s u l t s  i n  Fig.  23 

GCD = diameter of t h e  observable region 

r = r ad ius  of the  e a r t h  
e 

f = f r a c t i o n a l  amount of energy passed f o r  wavelengths i n  t h e  
f i l t e r  passband 

s = f r ac t iona l .  amount of IT which is  present  i n  the  passband (from 
Fig. 22 o r  (2.5-1)) 

= f r a c t i o n a l  amount of energy passed f o r  wavelengths i n  t h e  
f i l t e r  stopband. 

2 Since t h e  worct-case value w i l l  be used f o r  t h i s  c a l c u l a t i o n  = 10 ~ / m  
and s u b s t i t u t i n g  f o r  f p  and f s ,  the  va lues  found i n  Table 10 gives  

- 2 GCD 
pN - c i n  (r,) ~ 0 . 5 ~ ~  + 1.0 x I O - ~ ( L - ~ ~ )  

N I 
Note t h a t  p s  is t h e  only wavelength dependent quan t i ty  s o  t h a t  t h e  
expression i n  t h e  brackets  can be evaluated as a funct ion  of wavelength 
and t h e  worst-case value chosen. A conversion f a c t o r  can then be 
found t o  convert  t h e  worst-case value t o  t h e  value a t  t h e  des i r ed  
wavelength. The wavelength dependent q u a n t i t y  

was ca lcu la t ed  f o r  t h e  t y p i c a l  f i l t e r  found i n  Table 10  and assuming 
that t h e  background noise  had a s p e c t r a l  d i s t r i b u t i o n  corresponding t o  
t h a t  of a 6000% blackbody. Tne r e s u l t s  of t h i s  c a l c u l a t i o n  a r e  given 
i n  E1ig. 38. 

The wavelength at  which t h e  worst-case value occurs can be found 
by using (2.2-3) whlch g ives  h = 0 . 4 8 ~  f o r  t h e  wavelength a t  which t h e  
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FIGURE 38 FRACTIONAL AMOUNT OF ENERGY TRANSMITTED 

THROUGH A TYPICAL INTERFERENCE FILTER FOR 

A 6000° K SPECTRAL DISTRIBUTION. 



maximum noise  power occurs. A l l  c a l cu la t ions  w i l l  t he re fo re  be made 
us ing  t h e  value q(0.48) and a conversion f a c t o r  w i l l  be .used f o r  d i f f e r e n t  
wavelengths. Hence, 

Since t h e  u l t ima te  use of (3.9-3) and (3,g-4) w i l l  be t o  evalua te  t h e  
s ignal - to-noise  r a t i o  and t h e  noise  p w e r  appears i n  t h e  denominator, 
t he  conversion f a c t o r  w i l l  be defined f o r  converting the  s ignal - to-noise  
r a t i o  r a t h e r  than  the  noise puwer. The conversion f a c t o r ,  k, is 
defined as 

and is p l o t t e d  i n  Fig.  39. The s ignal - to-noise  r a t i o  a s  a func t ion  of 
wavelength is  found by mult iplying by t h e  conversion factor , .  k, while  
t o  f i n d  t h e  v a r i a t i o n a l  noise  power as a func t ion  of wavelength, i t  is 
necessary  t o  divLde by the  conversion f a c t o r  k. 

3.9.3 The Signal-to-Noise Rat io  Under Typica l  Operating Conditions 

One use of an  o p t i c a l  navigat ion  system would be t o  provide checks 
on the  l e s s  accura te  navigat ion systems ca r r i ed  by the  users .  A t y p i c a l  
example of t h i s  would be t o  pr0vid.e p o s i t i o n  up-dates t o  i n e r t i a l  
navigat ion  systems. Another use would be t o  el iminate blunder e r r o r s  
or  cycle-s l ipping  e r r o r s  which occur i n  e l e c t r o n i c  navigat ion systems. 
To c a l c u l a t e  the s ignal - to-noise  r a t i o  some assumptions must be made 
on t h e  accuracy of the  a p r i o r i  knowledge the  user  has of h i s  pos i t ion .  

Three s e t s  of navigat ion system parameters have been chosen t o  
r ep resen t  lm,mediurn and high accuracy systems. The choice of these  
parameters htls been made s o  that they  r e a l i s  t i c u l l y  represent  some of 
the  navigat ion  systems n m  i n  use,  The th ree  systems which w i l l  be 
considered a r e  given i n  Table 12 along with t h e  parameter va lues  which 
w i l l  be used. Actual  navigat ion  systems which might be used i n  
conjunct ion wi th  t h e  o p t i c a l  navigation system t o  give the  parameter 
values s t a t e d  a r e  a l s o  given. For s i m p l i c i t y  t h e  angular  e r r o r  i n  t h e  
heading, becJ and t h e  angular  e r r o r  i n  the  hor i zon ta l  reference,  ABH9 



A W A V E L E N G T H  ( p )  

GURE 39 C O N V E R S I O N  FACTOR TO FIND S N R  F R O M  
W O R S T -  C A S E  V A L U E  



Syctem Accuracy Parameters 
C 

Systems Which Might 
Produce This Accuracy References 

Low I n e r t i a l *  
Doppler 
CONSOL 

Opt ica l  and In f ra red  

A @ , , A ~ ~  = 0.3' Opt ica l  and In f ra red  61, PP.554- 
Techniques 563;81;82 

High I n e r t i a  1% 
Decca 
Omega 

nec,AeH = 0.05' Opt ica l  and In f ra red  61, PP.554- 
T e c h  ique s  563; 83 

I 

Table 12 

NAVIGATION SYSTEM PARAMETERS 

w i l l  be considered t o  be  equal .  Note t h a t  the  e r r o r  i n  t h e  h o r i z o n t a l  
r e fe rence  could a c t u a l l y  be t h e  e r r o r  i n  the determinat ion of t h e  l o c a l  
v e r t i c a l  s ince  e i t h e r  of t h e s e  could be used as a reference .  I n  a d d i t i o n  
it is  a l s o  assumed t h a t  t h e  e r r o r s  given a r e  the  maximum e r r o r s  which 
can be t o l e r a t e d  by t h e  o p t i c a l  navigat ion system and t h a t  they  occur 
independently wi th  no preferred va lues ,  

Now t h a t  the  accuracy of the  a p r i o r i  knowledge of the  u s e r ' s  
p o s i t i o n  has been determined by speci fy ing  t h e  navigat ion  system 
parameters, t he  s ignal- to-noise r a t i o  can be ca lcu la t ed .  The two 
cases  which w i l l  be considered a r e  t h e  c i r c u l a r  scanning pa t t e rn ,  
where t h e  received s i g n a l  energy i s  given by ( 3 . 8 - ~ 1 ) ~  and t h e  case  
where t h e  beam divergence i s  var ied  and the  received s i g n a l  energy is 
given by (3.8-53). The v a r i a t i o n a l  noise energy i s  equal. t o  t h e  
v a r i a t i o n a l  noise  power (3.9-6) mul t ip l ied  by t h e  s h u t t e r  time 

Depending on length  of time between pos i t  ion up-dat es  . 
+ Many o the r  methods a r e  a l s o  i n  use (e .g .  rnagnetic compasses). 



where To is t h e  s h u t t e r  time i n  sec .  The s ignal - to-noise  r a t i o  i n  each 
case can be found b y  d iv id ing  t h e  received s i g n a l  energy by the  v a r i a t i o n a l  
noise energy t o  g ive :  

2 Ob 
3.0 WTN s i n  

SNR = 

To I T s  s i n e )  s i n  (e)j2 
i n  t h e  scanning beam case and 

SNR = 
r 2 

i n  t h e  v a r i a b l e  beam divergence case.  Since t h e  s i g n a l  energy and 
noise  energy a r e  both d i r e c t *  propor t ional  t o  the  a r e a  of the  ob jec t ive  
lens,  t h i s  f a c t o r  does not  appear i n  t h e  s ignal - to-noise  r a t i o .  It 
should be noted, however, t h a t  it was assumed t h a t  t h e  major i ty  of t h e  
s i g n a l  energy would be focused on one ind iq idua l  image element s o  t h a t  
t h e  r e s o l u t i o n  of t h e  objec t ive  lens  mustsbe g r e a t e r  than  t h a t  o f ,  t h e  
t e l e v i s i o n  cgmera. The same s i t u a t i o n  was encountered i n  t h e  pass ive  
case  where the  lens  diameter was r e s t r i c t e d  by (2.2-8). I n  t h e  a c t i v e  
case t h i s  r e s t r i c t i o n  i s  given by (3.4-2), which i s  p lo t t ed  i n  Fig. 21, 
and t h e  lens diameter must be equa l  t o  or g r e a t e r  t h a n  the  value t h a t  
s a t i s f i e s  (3.4-2). 

I n  t h e  scanning beam case it w i l l  be assumed t h a t  t h e  scanning 
motion i s  completed during t h e  length  of time t h e  s h u t t e r  remains open. 
Normally, t h i s  would r equ i re  synchronizat ion between the  use r  and t h e  
s a t e l l i t e ,  but  i f  t h e  scanning motion is  repeated many times, then 
synchronizat ion is  not requi red .  This s tatement  i s  equivalent  t o  
saying t h a t  t h e  s p i r a l  scanning motion depicted i n  Pig. 29 can s t a r t  
at any poin t  on t h e  s p i r a l  but  the  e n t i r e  s p i r a l  must be covered once 
wi th in  t h e  s h u t t e r  t ime.  Under t h i s  assumption the  time f a c t o r s  i n  
(3.9-8) can be cancel led t o  g ive  

sm = 
@T 2 rr L S  s i n  ) s i n  (q)] 

which is v a l i d  provided t h e  user and s a t e l l i t e  motion is  small ( see  
Sect ion  2 .4) .  I n  t h e  v a r i a b l e  beam divergence case  it is a l s o  poss ib le  
t o  make the  same assumptions provided t h e  l a s e r  i s  on f o r  a period much 
longer than  t h e  s h u t t e r  time, I n  t h i s  case,  however, t he  time f a c t o r s  
w i l l  be r e t a ined  s i n c e  it would a l s o  be poss ib le  t o  use a very h igh  
power pulse l a s e r .  If t h e  s i g n a l  du ra t ion  were much smaller  than t h e  
s h u t t e r  time, then  t h e  problem of synchronizat ion would be minimal. 



This would be especia l ly  t rue  of the shu t te r  time were on the order 
of 0 .1  sec (as i n  Section 2.4) since r e l a t i v e l y  low accuracy clocks 
could be used, and considering t ha t  many of the  high power pulse l a se r s  
put out pulses a s  shor t  a s  1 0 - 2  see. 

To determine the t o t a l  beam divergence required (3.7-13) w i l l  be 
used but i f  AQc and ABH a r e  small then t h i s  equation can be approximated 
by 

where % p ~  i s  obtained from Fig. 27 or (3.7-1). Subst i tu t ing i n  the  
values from Table 12, the  following r e su l t s  a r e  obtained : 

Low : BT = 0.317 + 2.12 = 2.43T0 

= 0.106 + 0.424 = 0.53 0 
Medium: BT (3.9-12) 

High : BT = 0.0106 + 0.0707 = 0.0813~ 

Note t ha t  t he  major component of the t o t a l  beam divergence i s  due t o  
the  angular reference e r rors  so  t he  r e s t r i c t i o n  on the so l id  angle t o  
be searched i n  Fig. 27 i s  not s a t i s f i ed .  I n  t h i s  case BT must be 
subst i tu ted i n  (3.7-2) or (3.7-3) t o  find the  so l i d  angle t o  be searched. 
I n  deriving (3,9-8), i t  was assumed tha t  Bb << QT but t o  increase t he  
s i gna l  energy Ob should be a s  large a s  possible. As a reasonable compromise 
i n  t h i s  case Ob w i l l  be taken a s  

s o  t ha t  Bb i s  much l e s s  than QT, but i s  a s  large a s  possible,  This 
r e s u l t  was reached by considering that when Qb and BT a r e  re la ted  by 
(3.9-13) a t o t a l  of f i v e  revolutions of %he search beam w i l l  be 
required and t h i s  i~ the  minimum number required f o r  the assumptions 
used f o r  (3,9-8) t o  hold (see Section 3.8.3). 

The signal-to-noise r a t i o  i n  the scanning beam case, given by 
(3.9-10)~ is plot ted i n  Fig, 40 f o r  the three  navigation systems being 
considered, Note that from Fig. 21 an objective diameter of 1 m i s  
su f f i c i en t  t o  s a t i s f y  (3.4-2) f o r  a l l  values of the parameters used 
i n  Fig. 40, Tile signal-to-noise r a t i o s  given i n  Fig. 40 were derived 
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under the assumption of a 1 watt source operating a t  a wavelength of 
0. 48p. Operation a t  a longer wavelength can improve the  signal-  to-noise 
r a t i o  by a f ac to r  of 5 ( ~ i g .  39) and a l a s e r  power of 20 watts is not 
unreasonable s o  t h a t  the  signal-to-noise r a t i o s  i n  Fig. 40 can be 
improved. by a f a c to r  of 100. Even t h i s  improvement, however, is  
i n su f f i c i en t  t o  y ie ld  an image of s u f f i c i e n t  qua l i t y  f o r  any reasonably 
large  area.  

The signal-to-noise r a t i o  f o r  the  va r iab le  beam divergence case is  
plot ted  in  Fig. 41. By comparing t he  r e s u l t s  i n  Figs.  40 and 4 1  (or by 
dividing (3.9-8) by (3 .9-9)) i t  w i l l  be found that the signal-to-noise 
r a t i o  fo r  t he  scanning beam case is always l e s s  than the signal-to-noise 
r a t i o  f o r  the  var iable  beam divergence case f o r  equal  system parameters, 
Hence, it has been shown t h a t  s p i r a l  scanning w i l l  always be l e s s  
e f f i c i e n t  than increasing the beam divergence when a given conical  
region must be covered. I f  it i s  assumed, a s  i n  the previous case, 
that the signal-to-noise r a t i o  can be improved by a f a c t o r  of 100, then 
a s u f f i c i e n t l y  high qua l i t y  image can be obtained f o r  the  medium accuracy 

4 navigation system i f  N = 10 and GCD = 5 X 103. The values chosen f o r  
N and GCD correspond t o  t he  number of t e l ev i s i on  l i ne s  which can be 
expected f o r  the  high resolut ion t e lev i s ion  cameras which w i l l  be 
ava i l ab le  i n  the near fu tu re  and t he  g r ea t  c i r c l e  d is tance  corresponds 
t o  a f Feld-of-view of about 8 O  which i s  su f f i c i en t  t o  cover most of the  
North At lan t ic .  These parameter values correspond t o  the values of the  
t yp i ca l  op t i c a l  navigation system which was postulated in  the passive 
case.  To use Fig.  4 1  t o  find the  signal-to-noise r a t i o  i n  the  case of 
a pulsed s ignal ,  it i s  necessary t o  mult iply the  r e s u l t s  i n  Fig. 4 1  by 
the source energy (WT) and divide by the  shu t t e r  time To. 

1.9.4 The Sinnal-to-Eoise Ratio a t  the  Detector O u t ~ u t  

The r e s u l t s  obtained i n  t h e  previous sect ion indicate  t ha t  under 
c e r t a i n  conditions the  image received a t  t he  s a t e l l i t e  i s  of su f f i c i en t  
qua l i t y  t o  consider whether or not  a de tec to r  i s  ava i l ab le  which could 
r e l i a b l y  reproduce the  received image. To answer t h i s  question the  
signal-to-noise r a t i o  a t  the de tec to r  output w i l l  be examined t o  see i f  
a r e l i a b l e  determination c ~ u l d  be made a s  t o  the  presence or absence of 
a user ' s  s igna l .  Note t ha t  the de f i n i t i on  of the signal-to-noise r a t i o  
which w i l l  be used i n  t h i s  sec t ion  is  not t he  same as t ha t  used previously 
and w i l l  correspond much more c losely  t o  the commonly accepted 
de f i n i t i on  of a s ignal-  to-noise r a t i o .  

The signal-to-noise r a t i o  w i l l  be defined a s  the  r a t i o  of the  peak- 
to-peak s i gna l  divided by the  rms noise which is [84]: 

where I = current  generated a t  the  photocathode 

e = 1.6 x 10-19 c = elect ronic  charge 



W =  l 

= 0.48 p 
T = To 

N. 8 .  Equation ( 3.4-2 ) must be satisfied 

Grea t  C i rc le  Distance ( km)  
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B = bandwidth of the video ampli f ier  

F = a function of the  detector  parameters. 2 

T'ne photocurrent can be determined from the  irradiance using the  radiant  
s e n s i t i v i t y  of t h e  photosensitive surface.  

where p = radiant  s e n s i t i v i t y  i n  A/W 

Ir = incident i r radiance given by (3*8-52) 

A = area  of the  objective lens.  

The parameter F2 i s  a function of the de tec tor ' s  a b i l i t y  t o  s t o r e  t he  
information present i n  the image and der ive  a useful  video s igna l  from 
t h a t  information. The maximum value of F2 i s  one and a typ ica l  value 
fo r  p r a c t i c a l  detectors  is 0.5 [84]. Using (3.9-15)> (3.8-52) and t he  
values of F2 and e, t he  signal-to-noise r a t i o  becomes 

A t y p i c a l  value f o r  the radiant  s e n s i t i v i t y  of a r e l a t i ve ly  high 
s eno i t i v i t y  photooensitive surface i n  the  region 0 . 4 ~  t o  0 . 8 ~  might be 
0.05 A/W [85, p. 883 but values four times t h i s  can be achieved. It 
w i l l  be assumed a s  it was previously tha t  the objective lens diameter 
is on the  order of 1 meter so  that  the signal-to-noise r a t i o  becomes, 
a f t e r  subs t i tu t ion  of t h e  synchronous a l t i t u d e ,  

Since it was found that  a reasonably high qua l i ty  image could be obtained 
f o r  the medium accuracy navigation system, the value of QT w i l l  be taken 
"c be 0.01 rad (, 0.570). Since the  irnages w i l l  not change s ign i f i c an t l y  
during a period of several  seconds the t o t a l  time taken t o  scan the 
image can be r e l a t i ve ly  long. It w i l l  be a sumed tha t  the  time required 8 t o  scan the  image i s  10 sec and with N = 10 TV l ines  the  bandwidth 
required i s  5 MHz (from Fig. ~ 1 ) .  The signal-to-noise r a t i o  under these 
assumptions Fs 



I n  order f o r  a binary detect ion system t o  work r e l i ab ly  the signal-to-noise 
r a t i o  must be much grea te r  than one which implies, using (3.9-18), t h a t  
an average power on the  order of several  ki lowatts  would be required. 
%en t h e  high accuracy system with QT an order of magnitude lower would 
require several  hundred watts  of power f o r  a r e l i ab l e  s ignal .  

The very simple analysis  used t o  obtain the signal-to-noise r a t i o  
i s  probably not very accurate f o r  small s ignals .  However, the use of a 
more s ophisf;icated analysis  Qould probably yie ld  an even worse r e s u l t  
s ince  the more complicated models take in to  account add i t iona l  sources 
of noise which were not considered i n  the  equation used. I n  addi t ion the 
more complicated models require an increase i n  the  s i gna l  s t reng th  as the 
spac ia l  resolut ion i n  the  image is increased whereas i n  the  simple 
model used t o  derive (3.9-14) t h e  resolut ion entered the  problem only 
through the  bandwidth. It should be noted t ha t  t he  2W l a s e r  whiich was 
detected on the moon by the  Surveyor spacecraft  had a bearnwidth on t h e  
order of rnicroradians and the  video bandwidth was of the order of a few kHz 
so t h a t  a useable signal-to-noise r a t i o  was obtainable with very l i t t l e  
power. 

I n  the  case of very high peak power s ignals  the  t o t a l  energy received 
must be considered. Using (3.8-53) and recognizing WT a s  the  source 
energy t h e  received energy i s  

0 
or, using BT = 0.53 , 

where Js i s  the  output energy of t h e  source and A i s  the  objective lens 
area.  It has been reported tha t  it i s  possible t o  de tec t  a s i gna l  with 
an energy density of 2 X 10-lo ~ / m ~  [863. The energy densi ty  of t he  s i gna l  
a t  t he  input t o  the  image detector  may be found by dividing t h e  t o t a l  
energy received (3.9-20) by the  a rea  of t he  detector  

where U is  the  energy dens i ty  and Ad i s  the  area  of the  detector.  
Considering t h e  area  of t yp i ca l  components, the  r a t i o  A / A ~  m y  be on 
t h e  order of 150 so that 



and a detectable  s igna l  might be produced with a l a s e r  energy output on 
t he  order of severa l  hundred joules.  While pulsed l a s e r s  a r e  ava i l ab le  
with an output energy of t h i s  order of magnitude, t h e i r  cos t  is l i k e l y  
t o  be on the order of $25,000 and up [39, p. 1231. I n  add i t ion  the  
wavelength a t  which many of the  very high energy l a s e r s  operate is 
1.06~ and the  radiant  s e n s i t i v i t y  of most of t he  photosensit ive 
surfaces  avai lable  i s  about two orders of magnitude l e s s  than t h e  
s e n s i t i v i t y  i n  t h e  v i s i b l e  region. 

3.10 Conclusions on an Active Optical  Navigation Sys tem 

The f e a s i b i l i t y  of using an  op t i c a l  navigation s a t e l l i t e  with 
a c t i v e  users can be evaluated using the  r e s u l t s  presented in  Sections 
3.9.3 and 3.9.4. F i r s t  of a l l  it must be pointed out t h a t  the  a c t i ve  
op t i c a l  navigation system cannot be considered a s  a replacement f o r  
ex i s t i ng  navigation systems. The op t i c a l  navigation system i s  only 
capable of improving the  accuracy of an ex i s t ing  navigation system 
because the source power required t o  provide a usable s i gna l  when t he  
user does not have a f a i r l y  good idea of h i s  posi t ion is much t oo  large  
t o  be p rac t i ca l .  The success which has been achieved i n  using l a w  
power op t i c a l  sources t o  transmit  s ignals  over very long dis tances  has 
required extremely accurate aiming of t h e  source. I n  t he  case of the 
l a s e r  which t h e  Surveyor spacecraft  detected,the accuracy required in  
aiming the  l a s e r  was on t h e  order of 2-4 sees of a r c  [~l ] .  For t h e  
purpose of navigation it must not be a requirement t h a t  the l a s e r  be 
aimed very accurate ly  s ince  t h i s  would imply the  user a l ready knew h i s  
posi t  ion. 

The operation of the  ac t i ve  o p t i c a l  navigation system depends on 
the a b i l i t y  of' the user  t o  es t imate  h i s  posi t ion with some known degree 
of accuracy and then increasing t he  beam divergence of t he  op t i c a l  source 
t o  overcome t h i s  inaccuracy, One of the  major r e s u l t s  of t h i s  sect ion 
was the  development of the  re la t ionsh ip  between t h e  accuracy of the  
a p r i o r i  knowledge of the user ' s  posi t ion and the beam divergence of 
the source required t o  overcome t h i s  inaccuracy t o  ensure r e l i a b l e  
reception of t he  user ' s  s i gna l ,  I n  order t o  be p r ac t i c a l  the  o p t i c a l  
navigation system must be ab le  t o  take a r e l a t i v e l y  inaccurate est imate 
of the use r ' s  posi t ion and re f ine  i t  t o  a much more accurate  r e s u l t  and 
do  t h i s  with equipment t h a t  would cos t  l e s s  than other  types of equipment 
capable of achieving the same f i n a l  accuracy. 

The ernphEtsis on the  ana lys i s  used i n  t h i s  sect ion has been t o  
analyze the  image ava i lab le  t o  the debector in  terms of the various 
s y ~ t e m  parameters. The problem a s  i n  the  passive case was t o  achieve 
a s u f f i c i e n t l y  high qua l i ty  image s o  t ha t  t h e  u s e r s s  s i gna l  could be 
r e l i ab ly  distinguished from changes i n  the background. The r e s u l t s  of 
t h i s  ana lys i s  showed t ha t  i f  a region of given angular s i z e  must be 
considered then a la rger  received s i gna l  energy w i l l  r e s u l t  i f  the  beam 
divergence of the  source i s  increased $0 cover the  desired region ra ther than  



scanning t h e  desired region with a beam of smaller s i z e .  After  
determining t h e  conditions under which a reasonably high qua l i t y  
image could be obtained the  detector  required t o  convert t h e  image 
i n to  e l e c t r i c a l  s igna l s  was considered. The video bandwidth required 
t o  reproduce t h e  image was very large  and a considerable amount of 
i n t e rna l  noise was present which caused a large  reduction of t h e  signal-  
to-noise r a t i o  a t  t h e  output of the  detector .  

The r e s u l t s  obtained i n  t h i s  sect ion showed t h a t  t h e  maximum 
possible beam divergence which could be used and s t i l l  obtain a 
reasonable s i gna l  was on the  order of 0.5O. This is the  beam divergence 
required when t h e  user already knows h i s  posi t ion t o  be within a 10-km 
diameter c i r c l e  and has a v e r t i c a l  reference and compass heading 
accurate t o  within 0 .3~ .  Although it was found t h a t  it would be 
impossible t o  de tec t  t h e  s i gna l  from CW l a s e r s  of average power under 
these conditions it would probably be possible t o  de tec t  t h e  user's' 
s igna l  with a pulsed l a se r  with a n  output of several  hundred joules.  
Although such lase rs  a r e  ava i lab le  t h e i r  wavelength of operation is not 
i n  t h e  region where t h e  highest s e n s i t i v i t y  photosensitive surfaces 
operate,  With t he  resolut ion obtainable i n  t h e  t e l ev i s ion  cameras 
which w i l l  be avai lable  i n  the  near fu tu re  it should be possible t o  
reduce t he  e r r o r  i n  t h e  user's posi t ion from LO km t o  1 km if t he  user ' s  
s i gna l  can be detected.  The cos t  of t he  u se r ' s  equipment f o r  such a 
system would probably be i n  excess of $100,000, The l imited conditions 
under which any improvement i n  t h e  posi t ion accuracy might be obtained 
make the  use of an ac t i ve  op t i ca l  navigation system economically 
un jus t i f i ab le .  



4.0 ADDITIONAL AREAS OF STUDY 

The primary purpose of t h i s  s tudy  has been t o  ana lyze  t h e  problem 
of d e t e c t i n g  t h e  use r  Bs  s i g n a l .  The l ack  of s u i t a b l e  d e t e c t o r s  has  made 
it unnecessary t o  i n v e s t i g a t e  c e r t a i n  o the r  problems which would have 
been .considered i f  t h e  o p t i c a l  naviga t ion  system was f e a s i b l e .  

4.1 System C a l i b r a t i o n  and D i s t o r t  ion  

A l l  t e l e v i s i o n  cameras and o p t i c a l  systems have c e r t a i n  inherent  
d i s t o r t i o n s  and n o n l i n e a r i t i e s ,  I n  order  t o  use  a p re se l ec t ed  s e t  of 
s i g n a l s  as r e fe rence  p o i n t s  i n  t h e  t e l e v i s i o n  p i c tu re ,  t h e s e  n o n l i n e a r i t i e s  
and d i s t o r t i o n s  munt be removed. Since t h e  p o s i t i o n  of t he  use r  i s  
assumed t o  be r e l a t e d  t o  t h e  p o s i t i o n  of t h e  s i g n a l  i n  t he  image by  some 
i d e a l  geometr ica l  r e l a t i o n s h i p  any dev ia t ions  f r ~ m  t h i s  i d e a l  r e l a t i o n s h i p  
must be recognized and c o r r e c t e d ,  The removal of d i s t o r t i o n  and 
n o n l i n e a r i t i e s  from t e l e v i s i o n  p i c t u r e s  has been accomplished us ing  
c a l i b r a t e d  r e fe rence  images [87, 883. A d e t a i l e d  s tudy  would be necessary  
t o  determine i f  t h e  r e s i d u a l  e r r o r s  were sma l l  enough t o  be neglec ted  
and t h e  r e l a t i o n s h i p  between t h e  var ious  e r r o r s  and the  t o t a l  system 
e r r o r  would have t o  be  determined. 

4.2 Beam Broadening 

Since  s c a t t e r i n g  and atmospheric turbulence  produce a spreading 
of t h e  l a s e r  beam [89], t h e  beam divergence used f o r  c a l c u l a t i o n s  i n  
t h e  i d e a l  ca se  may have t o  be  increased t o  t ake  i n t o  account t h e  beam 
divergence which i s  a c t u a l l y  p re sen t  a t  t h e  s a t e l l i t e .  For h igh  
a l t i t u d e  u s e r s  it is  no t  expected t h a t  any c o r r e c t i o n  of t he  beam 
divergence would be necessary.  

)+. 3 Computut i o n u l  Scheme and Refrac t  ion  Correc t  ion  

I n  order  t o  compute t h e  p o s i t i o n  of t h e  use r  a r e l a t i o n s h i p  must 
be found between t h e  u s e r 8 s  p o s i t i o n  coord ina tes  on t h e  e a r t h  and t h e  
p o s i t i o n  coord ina tes  of t h e  u s e r ' s  s i g n a l  i n  t h e  t e l e v i s i o n  camera image. 
The r e fe rence  s i g n a l s  i n  t h e  image and t h e  p o s i t i o n  o f  t h e  r e f e rence  
s t a t i o n s  would provide a common reference  poin t  i n  each coord ina te  
sys  %em. The complexity of t h i s  coordinat e system t ransformat ion  w i l l  
determine t o  a g r e a t  e x t e n t  t h e  computat ional  capac i ty  which must be 
b u i l t  i n t o  t h e  s a t e l l i t e .  Since the  image a t  t h e  s a t e l l i t e  w i l l  c o n t a i n  
no information as t o  t h e  a l t i t u d e  of t h e  use r  t h e  coord ina te  t r ans fo rma t ion  
w i l l  have t o  be  made on t h e  b a s i s  of one r e fe rence  a l t i t u d e  and t h e  
u s e r  w l l l  have t o  c o r r e c t  t h e  p o s i t i o n  received according t o  t h e  d e v i a t i o n  
from t h i s  r e f e rence  a l t i t u d e ,  It w i l l  a l s o  be necessary  t o  determine 
the  amount of a tmospheric  r e f r a c t i o n  which w i l l  occur a t  t h e  r e f e rence  
altFtu.de under s tandard  condi t ions  of temperature,  humidity and pressure .  
It would then  be necessary  f o r  t h e  user  t o  c o r r e c t  t h e  amount of 
atmospheric r e f r a c t i o n  assumed i n  t he  caEculatics? s if s i g n i f i c a n t  
d e v i a t i o n s  from t h e  r e f e r e n c e  a l t i t u d e  and s tandard  atmospheric 
condi t ions  occured. I n  t h i s  case  it is  a l s o  expected that h igh  a l t i t u d e  
use r s  would not  have t o  make any s i g n i f i c a n t  c o r r e c t  ions.  



4.4  I den t i f i c a t i on  

The operation of the op t ica l  navigation system described is 
dependent only on the  detect ion of the  user  and not  iden t i f i ca t ion .  
Under these  condit ions the  user would be required t o  determine which 
of the detected s ignals ,  and corresponding locations,  correspond t o  a 
pa r t i cu l a r  user. Assuming that the re  a r e  only a few users and t h a t  
posi t ion determinations a r e  not required very frequently then the  
probabi l i ty  of having more than one user detected a t  a time i s  small. 
I f  the  posi t ions  of the users detected a r e  s u f f i c i e n t l y  f a r  apar t  then 
a pa r t i cu l a r  user should be ab le  t o  decide which pas i t ion  i s  h i s .  I f  
the  users a r e  c lose  together or  separated i n  a l t i t u d e  only then t he  
ident i f  i c a t  ion problem becomes more important. One poss i b  le  solut ion 
would be t o  ass ign  par t i cu la r  users a ce r t a i n  time block t o  use t he  
o a t e l l l t e  or t o  use severa l  d i f f e r en t  wavelengths along with a 
corresponding f  i l t c r  at d i f fe ren t  times. The so lu t ion  t o  t h i s  problem 
f o r  many users requiring frequent posi t ion determinatia? s i s  not evident 
and may not  be r ead i l y  solved. 

4.5 Other Systems 

The ac t ive  system being considered i s  not the  only possible system 
configuration which could be used. One possible a l t e rna t i ve  would be  t o  
put t he  op t i c a l  source i n  the s a t e l l i t e  and have a camera i n  the use r  
which de t ec t s  the  s i gna l  produced. This pos s ib i l i t y  was re jec ted s ince  
the  background noise problem would be much worse and would require  the  
user t o  have t he  more expensive equipment which i s  a d e f i n i t e  disadvantage. 
Although op t i c a l  s igna l s  have been detected from s a t e l l i t e s  it was only 
possible t o  de tec t  these  s igna l s  a t  night  [90]. 

Another possible a l t e rna t i ve  would be t o  have a r e t ro r e f l e c to r  
mounted i n  the  s a t e l l i t e  s imi lar  t o  t h e  l a s e r  r e f l e c t o r  l e f t  on the  
moon durlng t hc  Apollo mission. The user would then aim a l a s e r  at a 
port ion of t hc  cky und look f o r  a rcflcctLon from the  s a t e l l i t e  whose 
posi t ion is accurate ly  known. The r e tu rn  s igna l  from the s a t e l l i t e ,  
however, would be extremely hard t o  de tec t  s ince  only a very small 
f r a c t i o n  of the  energy transmitted would be re f l ec ted ;  the  re f l ec ted  energy 
would be inversely proport ional  t o  the  four th  power 
of the  dis tance  from the  user t o  the  s a t e l l i t e .  The aiming of t he  
l a s e r  would have t o  be extremely accurate  f o r  such a system t o  work. It 
would a l s o  have t he  add i t i ona l  disadvantage that the user  needs two expensive 
components, the  op t i c a l  detector  and the l ase r ,  while t he  s a t e l l i t e  would 
be relatively inexpensive. Other o p t i c a l  system configurations might be 
possible but i n  each case i f  a l a s e r  is  used then it  must be aimed as 
accurate ly  a s  possible and i f  an  incoherent source is  used then t h e  
background rad ia t ion  from the  sun w i l l  almost c e r t a i n ly  obscure the  
s i gna l  d w i n g  daylight  hours. The use of low-altitude s a t e l l i t e s  has 
not been considered because of the number of s a t e l l i t e s  t h a t  would be 
required f o r  continuous coverage and t h e  f a c t  t h a t  both the  s i gna l  and 
the ex te rna l  noise would increase i n  t he '  same pkoportion a s  the'  a l t i t u d e  
of. t h e  s a t e l l i t e  was decreased. 



5.0 RESULTS ANI? COl'TCLUSZONS 

5 . 1  Resume of t h e  Pr inc ipa l  Objectives of This Study 

The objective of t h i s  r epor t  has been t o  analyze the use of infra-  
red and o p J ~ i c a l  t e c h i q u e s  i n  a navigation system using synchronous 
s a t e l l i t e s .  The method of ana lys i s  has been t o  analyze the  o p t i c a l  
image which would be ava i l ab le  t o  the  de tec to r  under t y p i c a l  operating 
condit ions t o  determine i f  a u se r ' s  s i gna l  could be r e l i ab ly  detected.  
By concentrating the  ana lys i s  on the  image ava i lab le  and not t h e  
de tec to r  i t s e l f ,  it was hoped tha t  i t  would be poss ible  t o  determine 
the  f e a s i b i l i t y  of an op t i c a l  navigation system from a t heo re t i c a l  view- 
point without re ly ing t o o  heavily on t h e  current  s t a t e  of op t i c a l  
technology. This goal  was rea l i zed  t o  a ce r t a i n  extent  but it was 
necessary t o  assume t h a t  the  de tec to r  could resolve a ce r t a i n  number of 
individual  image e ].erne& s . 

Two d i f f e r e n t  s i t ua t i ons  were considered . F i r s t  , it was assumed 
t h a t  t he  s a t e l l i t e  would de tec t  t h e  in f ra red  energy emitted by the  
u s e r ' s  engines and use t h i s  inforrmtion t o  determine t h e  u s e r r  s posi t ion.  
I n  t h e  second case the users would be equipped wi th  high-power o p t i c a l  
sources which would be aimed i n  t h e  general  d i r ec t i on  of t he  s a t e l l i t e  
and these  s igna l s  would be used by t he  s a t e l l i t e  t o  compute t h e  u s e r P s  
posi t ion.  The two cases were denoted, respect ively ,  a s  the  passive 
case and t he  ac t i ve  case. The s a t e l l i t e  i s  equipped with a high 
reso lu t ion  t e lev i s ion  camera and a binary  decis ion i s  made on each 
resolvable image element as t o  t he  presence of a u se r ' s  s igna l .  A 
number of ground s t a t i o n s  w i l l  provide reference s igna l s  s o  t h a t  t he  
r e l a t i v e  pos i t ion  of the  s igna l s  i n  the  image can be used t o  compute t h e  
u s e r D s  loca t ion ,  Since t he  image which would be processed by t he  detector  
w i l l  only contain a few s igna l s  of i n t e r e s t  the binary  de tec t ion  system 
represents  a method of reducing t h e  amount of da ta  which must be  processed. 

5.2 Passive gavigation System 

I n  t he  passive case t he  source of the s i gna l  energy i s  assumed t o  
be  t h e  infrared energy emitted by t he  exhaust system of a ,jet engine. 
The background noise i n  t h i s  case cons i s t s  01 the  ini 'rared energy 
emitted by t he  ea r th  and clouds which a r e  normally much colder than the  
ea r th .  The ana lys i s  was based on a determinaticn of the e f f e c t  which 
changes i n  the  e f fec t ive  background temperature would have on t he  
de tec t ion  of the u s e r ' s  s ignal .  i3y assuming t h a t  t h e  resolut ion of t h e  
op t i c a l  system was high enough so t h a t  t he  user ss  s i gna l  would be present  
on only one resolvable  image element, it was possible t o  de r ive  a s igna l -  
to-noise r a t i o  which described t h e  qua l i t y  of the  image. 

The reso lu t ion  of the s a t e l l i t e  o p t i c a l  system i s  l imited by t h e  
diameter of t h e  objective lens s o  t h a t  associated with every resolvable  
image element w i l l  be an a r ea  on the ea r t h  whose energy is  focused on 
t h a t  image element. I f  the  va r ia t ion  i n  the  energy on an individual  
image element due t o  the presence of a user is  l e s s  than the  va r i a t i on  
due "c changes i n  t h e  e f fec t ive  background temperature then it w i l l  not 
be poss ible  t o  de tec t  the  presence or" t he  u s e r P s  s igna l .  The r a t i o  of 
these  var ia t ions ,  t h a t  i s  the va r ia t ion  of %he power incident  on an 



individual  image element due t o  a s igna l  divided by t he  va r i a t i on  i n  t he  
power due t o  changes i n  t h e  e f fec t ive  background temperature, was chosen 
a s  a measure of the  qua l i ty  of t h e  image. It was found t h a t  f o r  objective 
lenses of p r a c t i c a l  s i z e  it was not possible t o  rea l iab ly  discr iminate  
between changes i n  t he  energy on an image element due t o  t h e  presence of 
a s igna l  and changes due t o  d i f f e r en t  background temperatures. Under 
t y p i c a l  conditions the  s i gna l  va r i a t i on  might be severa l  orders of 
magnitude l e s s  than t h e  var ia t ion  due t o  changes i n  the  e f f ec t i ve  back- 
ground temperature. The reason f o r  t h i s  s i t ua t i on  i s  found i n  t he  s i z e  
of t h e  resolvable image element. Even though the  temperatures of t h e  
source and background a r e  qu i te  d i f f e r en t  t he  small percentage of energy 
f r o m t h e  background t h a t  f a l l s  i n  t h e  spec t r a l  region of t h e  source can 
be much g rea t e r  than t h e  desired s i gna l  because the  r e l a t i v e  s i z e  of 
the  resolvable area  and t he  source a r e  so  d i f fe ren t .  For example t h e  
s i gna l  might be generated by a source of severa l  square meters a t  a 
temperature of 600' t o  1000% while t he  background energy on t h e  same 
image element is  generated by an area  of several  thousand square meters ' 

at  a temperature of 250° t o  280'~. Although the  spec t r a l  d i s t r i bu t i on  
of t h e  e n e r a  generated a t  these  two temperatures i s  qu i t e  d i f f e r en t ,  t h e  
absolute  amount of energy generated by t h e  low temperature i s  s u f f i c i e n t  
t o  exceed t h a t  generated by tk high temperature source i n  the  desi red 
spec t r a l  region because of the  r e l a t i v e  s i z e  of t he  a reas  involved is  so  
d i f f e r en t .  The problem presented by t h e  var ia t ions  i n  the background 
i s  t h a t  it becomes imposs2ble t o  d i s t ingu ish  whether t h e  lai-ge amount of 
energy on one image element is  due t o  the  presence of a user  o r  t o  a 
very warm region. A very l a rge  object ive  lens diameter i s  necessary t o  
ensure t h a t  t he  var ia t ions  i n  t h e  e f fec t ive  background temperature of a 
resolvable a rea  a r e  much l e s s  than t h e  var ia t ion  due t o  t h e  presence of 
a user.  

Cer ta in  add i t iona l  problems besides t h e  de tec t ion  of t h e  user ' s  
s i gna l  were a l s o  examined. It was found t h a t  f o r  high a l t i t u d e  users  
the  atmospheric a t tenuat ion l i k e l y  t o  be encountered could be neglected. 
For low a l t i t u d e  users however t he  presence of even a s l i g h t  amount of 
water vupor ( i n  t h e  form of cloudo or fog)  along t hc  transmission path 
would cause a severe reduction i n  t h e  s i gna l  l e v e l  and would rmke t h e  
system inoperative.  Modifications t o  increase t he  infrared energy pro- 
duced by t h e  plane were considered but t h e  increases t h a t  could be 
produced by passive means would not be signigicant.  

In  add i t ion  t o  t he  background var ia t ions  i n  t he  image another 
problem is  t h a t  t he r e  a r e  no high s e n s i t i v i t y  detectors  capable of 
producing a two-dimensional irmge f o r  the  s p c t r a l  region i n  which most 
of %he source energy i s  located,  A large  number of point de tec tors  ark 
ava i lab le  f o r  t h e  desired spec t r a l  region but these  must be mechanically 
scanned t o  produce an image. The lack of a su i tab le  detector  would not 
present such a great  problem if it were merely a matter of improving 
the  detectors  a l ready avai lable .  Rowever t h i s  i s  not  t h e  case s ince  
t h e  infrared sens i t ive  camera tubes which have been developed f o r  t h e  
spec t r a l  region under consideration have been lit% l e  more than laboratory 
c u r i o s i t i e s  (except f o r  t he  poss ib i l i ty  of c l a s s i f i ed  developments). I t  
was concluded t h a t  t h e  large  amount of background noise present and t h e  
lack of a su i t ab l e  detector  would make passive de tec t ion  at  synchronous 
a l t i t u d e  impossible. 



5.3 Active Navigation System 

I n  t he  ac t ive  case each of the  users  i s  equipped with an o p t i c a l  
power source which i s  aimed i n  t h e  general  d i r ec t i on  of t h e  s a t e l l i t e .  
The user aims the  source t o  the bes t  of h i s  a b i l i t y  considering t h e  
accuracy of the  a p r io r i  knowledge of h i s  posit ion.  For t he  ac t i ve  case 
t h e  major source of background noise i s  the sunlight  re f lec ted  from the  
ea r th  and t h e  atmosphere. A problem s imi la r  t o  the  temperature var ia t ions  
encountered i n  the  passive case a r i s e s  because the  amount of re f lec ted  
energy var ies  g r ea t l y  according t o  the type of background present, e.g.,  
clouds, sea, land, e t c , ,  and t h i s  var ia t ion  causes the  same problem i n  
dis t inguishing the  user 's  s i gna l  from changes i n  the  background of t h e  
image. 

Since a var ie ty  of high power op t ica l  sources a r e  ava i lab le  an 
analysis  was made t o  determine what type of source would best  meet t he  
requirements of the  op t i ca l  navigation system. It w a s  found t h a t  
although many sources could e a s i l y  be detected i n  the absence of any 
background noise t he  l a se r  was t he  only source which could be detected 
i n  t h e  presence of the  background noise by using a f i l t e r  before t he  
detector .  The narrow spec t r a l  region i n  whlch t he  majority of t he  l a se r  
energy is located alluws a s ign i f ican t  amount of any background noise  
present t o  be removed by f i l t e r i n g .  The op t i ca l  f i l t e r s  which a r e  
present ly  avai lable  a r e  capable of eliminating a very large  percentage 
of the  undesired background energy while having a minimal e f f e c t  on t h e  
desi red s ignal .  The use of a s igna l  with a very narrow s p e c t r a l  range 
w i l l  not be advantageous unless a f i l t e r  i s  ava i lab le  which can ex t r ac t  
t h a t  s i gna l  from any background noise present. Although the  primary 
advantage of the  l a s e r  i s  i ts narrow spec t r a l  output there  a r e  two other 
important advantages. The l a se r  has a much smaller input power require-  
ment than many of the  other sources considered and the wavelength of 
operation can be chosen t o  a ce r t a in  extent  t o  minimize the  e f f e c t s  of 
atmospheric a t tenuat ion.  An analysis  showed t h a t  it would be bes t  t o  
use wavelengths in t he  near infrared if possible, bu t  t he  quantum 
eff ic iency of many detectors  i s  not very good i n  t h i s  region s o  t h a t  t h e  
f i n a l  choice of wavelength w i l l  depend on t he  spec t r a l  response of the  
detectors  ava i lab le  and t h e  wavelength of t he  l a se r  ra ther  than t he  
atmospheric a t tenuat ion present. 

The problem of atmospheric a t t enua t ion  i n  t he  ac t ive  case is s imi la r  
t o  t h a t  i n  t h e  passive case but t he r e  i s  an important d i f ference.  
Although it w i l l  s t i l l  not be possible t o  overcome the a t t enua t ion  in t ro -  
duced by clouds or fog along the transmission path it w i l l  be possible 
t o  increase the  source power t o  overcome some at tenuat ion.  The question 
now becomes what l eve l  of a t tenuat ion is i t  reasonable t o  t r y  t o  overcome 
and how much w i l l  the  navigation system performance be improved? To 
answer t h i s  question an analysis  was made of the  a t t enua t ion  leve l s  
which couM be expected i n  f a i r  weather. It was found t ha t  by increasing 
the  source power an order of magnitude above the  zero a t t enua t ion  l eve l  5t 
should be possible t o  overcome t h e  atmospheric a t tenuat ion which would 
be found under normal operating conditions. 

The de f in i t i on  of t he  signal-to-noise r a t i o  used i n  t h e  a c t i v e  case 
t o  analyze the  qua l i t y  of t h e  image i s  the same a s  t h a t  used i n  t h e  



passive case. The discussion about t he  signal-to-noise r a t i o  i n  the  
previous sect ion could almost be used here except f o r  t he  reason f o r  
the vurilztlonn i n  t he  background. RG WCLU s t a ted  previously the  predom- 
inant form of background noise Fn t h i s  case i s  the  cunlight  re f lec ted  
from the  atmosphere and various types of clouds. The ref lectance of the  
various weather formations can vaPy from almost zero t o  over 8@ s o  t ha t  
s ign i f ican t  differences can occur between t h e  background noise present 
on various image elements. As  i n  t he  passive case it was only possible 
t o  r e l i ab ly  de tec t  t he  u se r ' s  s i gna l  from the  background var ia t ions  
under very l imited circumstances. It was concluded t ha t  the  l imited 
circumstances under which the  u se r ' s  s i gna l  could be detected would not 
j u s t i f y  t he  cos t  of t h e  equipment involved. Even under t he  l imited 
circumstances when t he  image received was of s u f f i c i e n t  qua l i t y  t o  
d i s t ingu ish  the  user ' s  s ignal ,  i t  was questionable whether or not t h e  
i n t e r n a l  noise of the  detector  could be reduced enough t o  al low r e l i a b l e  
detect ion.  There i s  not only a s ign i f ican t  amount of noise present i n  
t h e  image but t he  resolut ion required in  t h i s  system is such t h a t  a 
very wide video bandwidth would be required, The shot noise and thermal 
noise generated i n t e rna l l y  i n  t h e  detector  may present a major problem 
because of the large  video ampli f ier  bandwidth. The high reso lu t ion  
te lev i s ion  camera tubes ava i lab le  have required spec i a l  construction 
techniques t o  minimize t he  i n t e rna l l y  generated noise. 

After  considering the  conditions under which an ac t i ve  o p t i c a l  
navigation system could operate it i s  concluded tha t  t he  use of such a 
system would not be economically j u s t i f i ab l e  considering t h e  l imited 
improvement i n  posit ion accuracy which might be obtained. Even i f  the re  
were no reference e r ro r s  i n  the  heading or  v e r t i c a l  reference, the  user 
would have t o  know h i s  posi t ion t o  within severa l  t ens  of kilometers i n  
order t o  ge t  t he  op t ica l  navigation system t o  operate and such accuracy 
is b e t t e r  than some of the  present radio  navigation systems provide. 
The successful  experiments using l a se r  beams transmitted over long 
dis tances  have required extremely accurate aiming of t h e  sources. One 
important implication of t h i s  i s  t ha t  t o  make use of one of t he  most 
important proper t ies  of a l a s e r ,  namely i t s  narrow beamwidth, it must be 
possible t o  a i m  t he  device properly. I f  it is  required t o  increase the  
beamwidth t o  compensate f o r  t h e  lack of a b i l i t y  t o  accurately aim t h e  
l ase r ,  then one of t h e  important propert ies of t he  device is  destroyed. 
It is apparent that t h e  operation of a navigation system depends on t he  
a b i l i t y  of the  t ransmit ter  t o  produce a useable s i gna l  over a large  
region without accurate ly  knowing beforehand i n  what d i r ec t i on  t o  t rans-  
m i t  t h e  energy. The l a s e r  does not fit t h e  requirements of the  naviga- 
t i o n  system considered and it i s  concluded t h a t  a t  t he  present time it 
would 5e much l e s s  expensive and a much b e t t e r  system could be obtained 
through t h e  use of rad io  frequency equipment. 

The r e s u l t s  obtained i n  t h i s  study indicate  t ha t  op t i ca l  techniques 
a r e  not capable of providing the  performance required f o r  a synchronous 
navigation s a t e l l i t e  system. I n  the  passive case the  detectors  ava i lab le  
have neither t he  s e n s i t i v i t y  nor the  resolut ion required t o  provide 
adequate performance. In the  ac t i ve  case the  conditions under which 
such a system could operate a r e  so r e s t r i c t i v e  and the cost  s o  high that 
it must be concluded t h a t  rad io  frequency techniques would give much 
b e t t e r  performance a t  a s ign i f i c an t l y  lower cost .  Considering t h e  



s t r ingen t  detector  requirements necessary i n  both t h e  ac t i ve  and passive 
cases and t he  detectors  presently avai lable  it seems unl ikely  t h a t  any 
technological  improvements w i l l  change t he  resu-l-ts presented t o  any 
g rea t  extent .  It should a l s o  be pointed out t h a t  s ince  wavelengths i n  
t h e  v i s i b l e  and near infrared regions do not penetrate clouds, an  
o p t i c a l  system would be r e s t r i c t e d  t o  users operating a t  high a l t i t u d e s  
above the  majority of clouds or  t o  users which could operate without 
t he  o p t i c a l  navigation system f o r  a time or  had a backup system t o  
navigate i n  periods of bad weather. 
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Appendix A 

THE GDOP FACTOR OETICAL RESOLUTION 

The geometrical  d i l u t i o n  of p rec i s ion  e f f e c t  (GDOP) a r i s e s  from 
t h e  p ro jec t ion  of t h e  minimum angular  r e s o l u t i o n  on t h e  curved su r face  
of the  e a r t h  a s  shown i n  Fig ,  A l .  A s  t h e  e l eva t ion  angle  t o  the  s a t e l l i t e  
increases  t h e  accuracy of t h e  pos i t ioc  f i x  d e t e r i o r a t e s  u n t i l  t h e  point  
a t  which t h e  s a t e l l i t e  is  on t h e  u s e r f s  horizon and t h e  system has become 
inopera t ive .  The bes t  r e s o l u t i o n  is always obtained a t  t h e  subsa te  l l i t e  
poin t  a s  would be  expected f o r  a n  ang le  measurement system. The p o s i t i o n  
e r r o r  is  given by 

PE = r1 68(€ ) cosec & (A* 1 )  

where PE = pos i t ion  e r r o r  

r 
1 = d i s t ance  t o  user  from s a t e l l i t e  ( see  (2.7-3)) 

68 (E ) = angular  r e s o l u t i o n  of t h e  o p t i c a l  system i n  r ad  
as a func t ion  of t h e  e l eva t ion  angle  

E = elevat ion  angle  t o  s a t e l l i t e .  

The GDOP f a c t o r  is defined a s  t h e  pos i t ion  e r r o r  as a funct ion  of the  
e l eva t ion  angle  normalized with r e spec t  t o  the  smal les t  p o s i t i o n  e r r o r  
which occurs at t h e  s u b s a t e l l i t e  poin t  hence 

r 68(e )  cosec e  
GDOP = 

1 
r (A.2)  

@; 

where r = ground r e s o l u t i o n  (pos i t ion  e r r o r )  a t  t h e  s u b s a t e l l i t e  
g point .  

S impl i f i ca t ion  of t h i s  formula is poss ib le  by making a s u i t a b l e  
assumption on t h e  angular  r e so lu t ion .  The ground r e s o l u t i o n  is  given 
by 

where 68(0)  = angular  r e s o l u t i o n  a t  t h e  s u b s a t e l l i t e  poirit 

r = synchronous a l t i t u d e .  
S 

I f  it can be assumed t h a t  t h e  angular  r e so lu t ion  is cons tant  over the  
e n t i r e  image then  ( ~ ~ 2 )  reduces t o  
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where r = 36,000 km = synchronous a l t i t ude .  s  

The GDOP fac tor ,  ( ~ . 4 ) ,  i s  p lot ted i n  Fig,  3 of Section 2.3.1. For an 
op t i ca l  system using a te lev i s ion  camera a s  a detector  the  assumption 
t h a t  t h e  angular resolut ion is constant i s  somewhat questionable. Not 
only does t h e  d i f f rac t ion  l&mited resolut ion become worse near t h e  edges 
of t he  image but t h e  e f f ec t  of aberra t ions  or departures from a perfect  
image a l s o  become worse near t h e  edges. The e f f ec t  of the  aberra t ions  
on t he  image i s  sometimes proportional  t o  the seventh parer of t h e  dis tance 
from the  center of the  irmgc which means very high d i s t o r t i o n  f o r  users 
near t h e  edge of t h e  field-of-view. 

In  addi t ion t o  t h e  decreased resolut ion at; t he  image edge due t o  
imperfect lens construction, t h e  resolut ion of the  t e l ev i s ion  camera 
a l s o  decreases away from the image center.  The operation of t e lev i s ion  
camera tubes normally involves some form of electromagnetic f i e l d  which 
is  used f o r  def lect ion and accelera t ion of t he  e lect ron beam, Uniform 
f i e l d s  a r e  of ten required over a given volume and the  uniformity w i l l  
depend on t he  precise  placement and construction of t he  tube elements. 
In many cases the  uniformity over t h e  en t i r e  image a rea  cannot be 
maintained and t h e  resolut ion a t  t he  edge is  often 40% l e s s  than at  t he  
center of t he  image. 

The increase i n  the  posi t ion e r ror  given by the  GDOP fac to r  can 
only be considered as a lower l i m i t  on t h e  posi t ion e r r o r  which might 
be two or  th ree  times t h a t  predicted by t h e  GDOP fac to r .  O f  course it 
i s  possible t o  reduce t h e  e f f ec t  of the  op t ica l  d i s t o r t i ons  by providing 
correction fac tors  f o r  posit ions near the  edge of t h e  image. The 
reduction i n  t he  rcsolut ion or posi t ion accuracy can thus be a t t r i bu t ed  
t o  the f ollawiny in te rac t ing  fac torc  : 

1) the gcomctrical d i l u t i on  of precicion due t o  poor user- 
s a t e l l i t e  geometry 

2) op t i ca l  d i s t o r t i ons  which increase near t h e  image edges 

3 )  reduced t e l ev i s ion  resolut ion near t he  edge of the  photo- 
sens i t ive  surface 

4 )  the  increased atmospheric path length which w i l l  make it 
more d i f f i c u l t  t o  correct  f o r  atmospheric re f rac t ion .  

I n  addi t ion t he  v e r t i c a l  angular measurement and the hor izontal  angular 
measurement form an orthogonal coordinate system i n  which case:  



whcrc-. r - t o t a l  p o s i t i o n  e r r o r  t 
r = h o r i z o n t a l  r e s o l u t i o n  

h  
r = v e r t i c a l  r e s o l u t i o n .  v 

Sincc  t h e  v e r t i c a l  and h o r i z o n t a l  r e s o l u t i o n s  a r e  assumed t o  b e  equal ,  
t h e  rnaximwn p o s i t i o n  e r r o r  f o r  any use r  p o s i t i o n  is  

r = r GDOP t g 

and t h e  maximum p o s i t i o n  e r r o r  occurs  a long  a use r  p a t h  which is  a t  a 
45O ang le  t o  t h e  p r o j e c t i o n  of t h e  scanning l i n e s  on t h e  e a r t h ' s  su r f ace .  
The t e rm "maximum p o s i t i o n  e r r o r "  i s  meant t o  mean t h e  p o s i t i o n  e r r o r  i n  
t h e  case  where t h e  only decrease  i n  r e s o l u t i o n  is  t h a t  due t o  t h e  GDOP 
f a c t o r  and t h e  o p t i c a l  system and t e l e v i s i o n  camera are d i s t o r t i o n l e s s .  



Appendix B 

TELFVISION CAi"ERA. RESOLUTION 

The reso lu t ion  of a t e l ev i s i on  camera can be expressed i n  a nuinber 
of ways. The number of t e lev i s ion  l ines ,  as used i n  t h i s  repor t ,  means 
the  ac tua l  number of r a s t e r  l i ne s  which a r e  present i n  t h e  image or 
equivalently the number of hor izonta l  scanning l i ne s .  

The reso lu t ion  of a photosensitive surface  can be derived from a 
s t a t i s t i c a l  ana lys i s  of the quantum processes which take  place [24,25,62]. 
A number of d i f f e r en t  un i t s  a r e  ernployed t o  express the spac i a l  
resolut ion capab i l i t y  of a photosensit ive surface  which is known a s  
the resolving power ( f r ) .  The un i t s  of f a r e  r 

cycles - l ine -pa i r s  - l i n e s  - -- 
mm mrn mm 

and a r e  used interchangebly i n  many repor ts .  The number of TV l i n e s  is  
a funct ion of the  scanning c i r c u i t s  used and the  spac i a l  resolving 
power i s  a funct ion of t he  photosensit ive surface  and t h e  energy incident  
on t ha t  surface.  The number of TV l ines  can be re la ted  t o  t h e  resolving 
power by noting t h a t  by the  sampling theorem, two samples a r e  required 
t o  give a spac i a l  resolut ion of one cycle and here t h e  samples a r e  the 
r a s t e r  l i n e s  which means t h a t  two TV l i n e s  a r e  required f o r  every cycle 
of resolving power. [59]. 

- - l i n e s  1 TV l i ne s  =--.----=- 
mm mrn mm 2 rnm 

The reso lu t ion  capab i l i ty  of a t e l ev i s i on  camera tube is  normally 
given i n  terms of t he  maximum number of TV l i ne s  but  f o r  spec i a l  purpose 
cameras the  reso lu t ion  i s  sometimes given i n  terms of t h e  maximum 
resolving power which i s  hal f  t he  number of TV l i n e s .  The resolut ion 
can be expressed i n  terms of the  t o t a l  number of TV l i ne s  (or  cycles ) 
o r  i n  terms of t he  TV l i n e  (or  cycle)  density,  i. e., TV l i ne s  (or  
cycles ) /mm. 

The spac i a l  resolving power of a photosensit ive surface  i s  l imited 
by t h e  incident  energy and t h e  quanturn proper t ies  of t he  surface  up unCil 
the  point  a t  which t he  spac ia l  resolut ion begins t o  exceed the  s i z e  of 
t h e  granules making up t he  surface.  A t  present most photosensitive, i , e ,  TV, 
surfaces a r e  not capable of resolut ions  exceeding 100 lines/rnm although 
higher resolut ions  a r e  possible by performing spec i a l  smoothing opera- 
t i ons  on the cathode oxide [?g, 60J. No increase in  resolut ion i s  
possible by having the  number of scan l i ne s  g rea te r  than twice the  
spac i a l  resolut ion l i m i t  whether the  spac i a l  r eso lu t ion  l i m i t  i s  quantum 



l imi t ed  or  l imi t ed  by t h e  g r a n u l a r i t y  of t h e  su r face .  

It was assumed i n  Sect ion  2.7 t h a t  t h e r e  w a s  equal  r e s o l u t i o n  
i n  t h e  h o r i z o n t a l  and v e r t i c a l  d i r e c t i o n s .  The r e s o l u t i o n  i n  t h e  
v e r t i c a l  d i r e c t i o n  i s  a  func t ion  of t h e  number of TV (scan) l i n e s  while  
t h e  h o r i z o n t a l  r e s o l u t i o n  i s  obtained from t h e  image i n f o r m t i o n  read- 
out  during t h e  scanning process. The r e s o l u t i o n  i n  t h e  h o r i z o n t a l  
d i r e c t i o n  i s  d i r e c t l y  propor t ional  t o  t h e  a b i l i t y  of t h e  v ideo a m p l i f i e r  
t o  reproduce c l o s e l y  spaced pulses  which is  d i r e c t l y  propor t ional  t o  t h e  
a m p l i f i e r  bandwidth. The h o r i z o n t a l  r e s o l u t i o n  is  r e l a t e d  t o  t h e  ampli- 
f i e r  bandwidth by [26 1 : 

where 13 = hor izon ta l  r e s o l u t i o n  i n  TV l i n e s  II 
a = aspec t  r a t i o  = height lwidth  

B  = bandwidth i n  Hz 

N = number of TV l i n e s  

f = frame r a t e ,  
f  

The a spec t  r a t i o  is  1.0 s i n c e  it i s  assumed t h a t  t h e  v e r t i c a l  and 
h o r i z o n t a l  s i d e s  of t h e  image a r e  equal.  The frame frequency is simply 
t h e  p i c t u r e  r a t e ,  

The bandwidth determined by ( ~ ~ 3 )  i s  not  t h e  bandwidth requi red  t o  
t ransmi t  t h e  p o s i t i o n  information but only t h e  bandwidth required of t h e  
video ampl i f i e r .  The output of t h e  v ideo ampl i f i e r  w i l l  be f ed  t o  a  
th resho ld  device which w i l l  quantizc t h e  output .  Since t h e  bandwidth 
rcyuircd of' t h o  vidco ampl i f i e r  rmy detc?rrnine t h o  fe t t s i .b i l i ty  of t h e  
~ y ~ t c r n  it ohou Ld bc ca Lcuhted  f o r  u ty j)icul cys Lcm. Aco~uric Lhut t h c  
frame r a t e  i n  e i t h e r  one per  second, one every f i v e  se:conds, or orlc 
every t e n  seconds, which i s  reasonable t o  assume from t h e  c a l c u l a t i o n s  
made i n  Sect ion  2.4, If t h e  v e r t i c a l  and h o r i z o n t a l  r e so lu t ions  a r c  
equal,  then  RH = N which when s u b s t i t u t e d  i n  ( ~ . 3 )  g ives  : 

The r e s u l t s  of t is  c a l c u l a t i o n  a r e  shown i n  Fig.  B1. If t h e  camera P r e s o l u t i o n  is  10'. l i n e s ,  then  t h e  maximum bandwidth required would be  
50 MHz, Since d i s t r i b u t e d  video ampl i f i e r s  have been constructed wi th  
bandwidths i n  excess of 400 MHz, t h e  ampl i f i e r  bandwidth w i l l  not r e s e n t  E any se r ious  l i m i t a t i o n s  u n t i l  t h e  r e s o l u t i o n  i s  b e t t e r  than  3 X 10  l i n e s .  





Appendix C 

COMPUTER PROGRAM 

The following computer program computes t h e  i r radiance ( incident  
power dens i ty )  on a  s a t e l l i t e  a t  synchronous a l t i t u d e  due t o  a c i r cu l a r  
region of diameter GCD. The ea r t h  i s  assumed t o  be a black body at 
250°K and the  cen te r  of the  c i rcu la r  region is  the s u b s a t e l l i t e  point .  
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Appendix D 

,wrctrm.rJ L J N ~  OF G O ~ *  ILMPRTU~P I C L I ~ ~ T S  
UrJJ$B :1.N AltC PIGClfiJi~l~: Inm AND IAUkGJJIL1, 

The spec t r a l  output of l a s e r s  and a r c  discharge lamps is  dependent 
on the  elements used i n  t h e i r  construction.  A l l  elements have character-  
i s t i c  s p e c t r a l  l i ne s  corresponding t o  the  various possible t r an s i t i ons  
wi thin  t h e  s t r uc tu r e  of t he  atom. The t r a n s i t i o n  of an  e lec t ron  from 
one l e v e l  t o  another can produce l i g h t  energy with a wavelength 
corresponding t o  t h e  change i n  energy which occurred. Lasers and the  
l i g h t  produced by a r c  discharges have strong emission l i ne s  corresponding 
t o  these  atomic l e v e l  changes. 

I n  the  case of a r c  discharge lamps using mercury vapor the re  a r e  
s p e c t r a l  l i ne s  at t h e  locat ions  given i n  t he  following l ist .  Where 
severa l  l i ne s  occur i n  a small region, only the  region i s  l i s t e d  with 
t h e  predominant l i n e  i n  parenthesis  if the re  is  a predominant l i n e  i n  
t h a t  region, A l l  wavelengths a r e  i n  microns. 

Two of t h e  popular gases used i n  l a s e r s  a r e  argon and krypton. 
The important wavelengths produced by these  gases a r e  l i s t e d  below i n  
order of decreasing power. 

Argon f i y p t  on 

%he elements and compounds which a r e  cur ren t ly  used i n  a majori ty 
of the  lasero  ava i l ab le  a r e  l i a t e d  i n  the  t a b l e  below. 

m t e r i a l  

cr (Ruby) 
Nd ( ~ o ~ e d  g lass  or YAG) 
HeNe 
A r  
C02 
K r  
GaAs ( ~ n j e c t i o n  l a s e r )  

Table D l  
COlviMON LASER MATERIALS AND THEIR CORRESPONDING SPECTRAL OUTPUT 



Appendix E 

LASERS USED AS EXAMPUS I N  SECTION 3.6.1.4 

Table 
P 

No. Manufacturer 

Hughes 
Resalab 
Hughes 
Avco 
Orlando Research 
Korad 
Resalab 

Biorad 
TRG 
Bi wad 
American Optical  
Siemens 
General U s e r  

Seed Electronics 
Seed Electronics 
Sperry 
Laser Diode Iabs 

QLPM 
302- 1 
vD640 
20 
SLR-3C1 
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3. A B S T R A C T  The f e n s i b i l i t y  of using o p t i c a l  and in f ra rcd  technology f o r  use i n  
synchronous ~ i a v i g a t i o n  s a t e l l i t e s  i s  examined. The ana lys i s  i s  bcisrd 
pr imari ly on a  deterininntion of t h r  cjurrlity of tho im'q:e a v a i l a b l e  t o  
the  d e t e c t o r  w:der vdrious condit ions and not on the  p roper t i e s  of tha 
de tec to r  i t s e l f  except f o r  thc  resolving power of t h e  de tec to r .  

I n i t i a l l y  3 pxssive-u:;tr ny:;tenl i s  considered where t h e  nuvigiuticn 
s a t e l l i t e  d e t e c t s  t h e  in f ra red  energy emit ted by t h e  use r ' s  elcine:;. 
J e t  a i r c r a f t  weye considercd f i r s t  hccuuse of the  r c l a t i v c l y  lart.t- 
amount of i n f m r e d  t3nerEy eriiitted by t h e i r  engines. Fy considering the 
energy incident  on a  s i n g l e  r ~ ; ; o l v a b l c  irriage cleineiiC it was found t l u t  
t h e  s i g n a l  encr ty  a v a i l a b l r  could no:. be r e l i a b l y  di:ti~icuished f r m i  
c h a w e s  i n  the  ei ' fect ive bac1qrour.d tciriperature of t h e  ea r th .  It was 
conclcded t h s t  :I x!avigaticil zyrtcm using passive i l~fral-cd deti-ction 
from synchronous a l - t i tude  i s  noL f e a s i b l e .  

An ac t ivc -use r  system i s  a l s o  considered where the  rinvigating users 
a r e  equipped k i t h  high-power, cpti.ca1-cnergy sources. A co::lparison of 
the  vaarious o p t i c a l  sources showed t h a t  l a s e r s  would y ie ld  the highest  
s ignal- to-noise r a t i o  because t h e  narrow s p e c t r a l  regions i n  which t h e i r  
energy i s  concent.rated would al lor i  rnost of t h e  background no i se  
t o  be removed by f i l t e r i n g .  It was fourid t h a t  t h e  s i g n a l  energy 
required f o r  a  s a t i s f a c t o r y  image could only be obtained under very r e s t r i c -  
t i v e  condit ions.  Under such condit ions,  i t  ,$as a l s o  necessary t o  corlsider 
the  i n t e r ~ ~ a l  noise of the  d e t e c t o r  t o  determine i f  the s i g n a l  could be 
d e t e c t e d  1% was found t h a t  f o r  a  reasonable average. source pover 
t h e  s i g n a l  could not be detected due t o  t h e  l a rge  amount of d e t e c t o r  
no i se  present .  fhJ using a  very high peak pcuer l a s e r  i t  should be 
poss ib le  t o  d e t e c t  t h e  u s e r ' s  sig1:al but the  present  c o s t  of such a  
l a s c r  makes sucli a  system econc~!~icall.y inipract ical  considering t h e  
l imited circumstances under vhich i t  could be used. 

Although a number of o p t i c a l  system.. other  than the  ones described 
could be considered it i s  cor~cluded L i a t  o p t i c a l  techniques do nor. 
represent  a  f e a s i b l e  a l t e r n a t i v e  t o  the use of rad io  frequency techniques 
f o r  svnchronous navigat ion s a t e l l i t e s .  - 
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